DOPA is a Causal Factor for Glutamate Release and Delayed Neuron Death by Transient Ischemia in Striatum and Hippocampal CA1 of Conscious Rats

  • Y. Misu
  • Y. Goshima
  • N. Furukawa
  • N. Arai
  • T. Miyamae
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)

Abstract

DOPA is believed to be an inert amino acid that affects Parkinson’s disease via conversion to dopamine (DA) by aromatic L-amino acid decarboxylase (AADC). We proposed that DOPA is a transmitter and/or modulator as well as a DA precursor.1 DOPA seems to be a transmitter of the primary baroreceptor afferents terminating in the nucleus tractus solitarii (NTS).2 In the NTS, neurons showing immunocytochemically tyrosine hydroxylase-(+), AADC-(-), DOPA-(+) and DA-(-)-reactivity exist.1,2 Such neurons may have DOPA as an end product. DOPA is released by aortic depressor nerve (ADN) stimulation.2 DOPA esters competitively antagonize hypotension and bradycardia by ADN stimulation and by DOPA microinjected.1–3 DOPA cyclohexyl ester (CHE) is the most potent and relatively stable competitive antagonist among DOPA esters.3 Responses to DOPA occur under inhibition of central AADC.1,2

Keywords

Toxicity Ischemia Hydroxyl Dopamine Tyrosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Misu, Y. Goshima, H. Ueda, and H. Okamura, Neurobiology of L-DOPAergic systems, Prog. Neurobiol. 49(5), 415–454 (1996).PubMedCrossRefGoogle Scholar
  2. 2.
    J.-L. Yue, H. Okamura, Y. Goshima, S. Nakamura, M. Geffard, and Y Misu, Baroreceptor-aortic nerve- mediated release of endogenous L-3,4-dihydroxyphenylalanine and its tonic function in the nucleus tractus solitarii of rats, Neuroscience 62(1), 145–161 (1994).PubMedCrossRefGoogle Scholar
  3. 3.
    N. Furukawa, Y Goshima, T. Miyamae, Y Sugiyama, M. Shimizu, E. Ohshima, F. Suzuki, N. Arai, K. Fujita, and Y Misu, L-DOPA cyclohexyl ester is a novel potent and relatively stable competitive antagonist against L-DOPA among several l-DOPA ester compounds in rats, Jpn. J. Pharmacol. 82(1), 40–47 (2000).PubMedCrossRefGoogle Scholar
  4. 4.
    Y Goshima, K. Ohno, S. Nakamura, T. Miyamae, Y Misu, and A. Akaike, L-DOPA induces Ca2+-dependent and tetrodotoxin-sensitive release of endogenous glutamate from rat striatal slices, Brain Res. 617(1), 167–170 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    T. Miyamae, Y Goshima, M. Shimizu, T. Shibata, K. Kawashima, E. Ohshima, E Suzuki, and Y Misu, Some interactions of L-DOPA and its related compounds with glutamate receptors, Life Sci. 64(12), 1045–1054 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    N. Furukawa, N. Arai, Y Goshima, T. Miyamae, E. Ohshima, F Suzuki, K. Fujita, and Y Misu, Endogenously released DOPA is a causal factor for glutamate release and resultant delayed neuronal cell death by transient ischemia in rat striata, J. Neurochem. 76(3), 815–824 (2001).PubMedCrossRefGoogle Scholar
  7. 7.
    N. Arai, N. Furukawa, T. Miyamae, Y Goshima, Y Sasaki, E. Ohshima, F. Suzuki, K. Fujita, and Y. Misu, DOPA cyclohexyl ester, a competitive antagonist, protects glutamate release and resultant delayed neuron death by transient ischemia in hippocampus CAI of conscious rats, Neurosci. Lett. 299(3), 213–216 (2001).PubMedCrossRefGoogle Scholar
  8. 8.
    D. W. Choi, Glutamate neurotoxicity and diseases of the nervous system, Neuron 1(8), 623–634 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    T. P. Obrenovitch, and D. A. Richards, Extracellular neurotransmitter changes in cerebral ischaemia, Cerebrovasc. Brain Metab. Rev. 7(1), 1–54 (1995).PubMedGoogle Scholar
  10. 10.
    N.-N. Cheng, T. Maeda, T. Kume, S. Kaneko, H. Kochiyama, A. Akaike, Y Goshima, and Y Misu, Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons, Brain Res. 743(1–2), 278–283 (1996).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Maeda, N.-N. Cheng, T. Kume, S. Kaneko, H. Kouchiyama, A. Akaike, M. Ueda, M. Satoh, Y Goshima, and Y Misu, L-DOPA neurotoxicity is mediated by glutamate release in cultured rat striatal neurons, Brain Res. 771(1), 159–162 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    V. L. Dawson, T. M. Dawson, D. A. Bartley, G. R. Uhl, and S. H. Snyder, Mechanisms of nitric oxide- mediated neurotoxicity in primary brain cultures, J. Neurosci. 13(6), 2651–2661 (1993).PubMedGoogle Scholar
  13. 13.
    Y Goshima, S. Nakamura, K. Ohno, and Y Misu, Picomolar concentrations of L-DOPA stereoselectively potentiate activities of presynaptic β-adrenoceptors to facilitate the release of endogenous noradrenaline from rat hypothalamic slices, Neurosci. Lett. 129(2), 214–216 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    L. Zhang, A. Mitani, H. Yanase, and K. Kataoka, Continuous monitoring and regulating of brain temperature in the conscious and freely moving ischemic gerbil: effect of MK-801 on delayed neuronal death in hippocampal CAI, J. Neurosci. Res. 47(4), 440–448 (1997).PubMedCrossRefGoogle Scholar
  15. 15.
    Y Goshima, K. Yamanashi, T. Miyamae, Y Sasaki, M. Maeda, H. Hirano, and Y Misu, Involvement of nitric oxide production via ionotropic glutamate receptor in DOPA-induced depressor responses in the nucleus tractus solitarii of anesthetized rats, Proceedings of the 9th International Catecholamine Symposium, 22(2001).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Y. Misu
    • 1
  • Y. Goshima
    • 2
  • N. Furukawa
    • 2
  • N. Arai
    • 3
  • T. Miyamae
    • 2
  1. 1.Shinobu HospitalFukushimaJapan
  2. 2.Yokohama City University School of MedicineJapan
  3. 3.Tokyo Metropolitan Institute of NeuroscienceTokyoJapan

Personalised recommendations