Advertisement

Heteromerization of Adenosine and Dopamine Receptor Subtypes: Relevance for Neuronal Integration in Normal and Pathological States

  • Kjell Fuxe
  • Sergi Ferré
  • Maria Torvinen
  • Jöelle Hillion
  • Ingrid Strömberg
  • Ove Franzén
  • Carlos Ibanéz
  • Michele Zoli
  • Carmen Lluis
  • Luigi F. Agnati
  • Rafael Franco
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)

Abstract

Ever since the beginning of the 1980’s indications have been obtained for the existence of intramembrane receptors-receptor interactions among different types of G protein coupled receptors (GPCR) in the brain (Agnati et al., 1982, Fuxe et al., 1983) and it was suggested in 1993 that the structural basis for these intramembrane interactions is represented by the formation of GPCR heterodimers (Zoli et al., 1993). It must also be noticed that already in the early 80’s crosslinking and radiation inactivation experiments and experiments on gel filtration and analytical sucrose density gradient ultracentrifugation indicated that GPCR could exist as homodimers (see Salahpour et al., 2000). There now exists strong evidence for homo- and heteromerization of GPCR from several groups (see, e.g., Salahpour et al., 2000, Bouvier 2001, Devi and Brady 2000, Tallman 2000, Franco et al., 2000), including evidence for the existence of dimers and oligomers of D1 and D2 receptors and of A1 receptors (Ciruela et al., 1995). In the present review the evidence for adenosine and dopamine receptor subtype-specific heteromerizations will be presented and their role in mediating A1/D1 and A2A/D2 antagonistic receptor interactions and in receptor trafficking will be discussed (Gines et al., 2000, Hillion et al., 2001).

Keywords

Heteromeric Complex Gaba Pathway Heteromeric Receptor Complex Volume Transmission Signal Striatal Membrane Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati L. F, Fuxe K, Zoli M, Rondanini C. and Ögren S.-O, 1982, New vistas on synaptic plasticity: the receptor mosaic hypothesis on the engram, Med Biol. 60: 183–190.PubMedGoogle Scholar
  2. Agnati L. F, Benfenati F, Solfrini V, Biagini G, Fuxe K, Guidolin D, Carani C. and Zini I, 1993, Intramembrane receptor-receptor interactions: integration of signal transduction pathways in the nervous system, Neurochem Int. 22: 213–222.PubMedCrossRefGoogle Scholar
  3. Agnati L. F, Franzén O. and Fuxe K, 2001, On the molecular basis of learning and memory. Possible role of intramembrane receptor-receptor interactions via formation of long-lived heteromeric complexes of higher order, PNAS (submitted).Google Scholar
  4. Bouvier M, 2001, Oligomerization of G-protein coupled transmitter receptors, Nat. Rev. Neurosci. 2: 274–286.PubMedCrossRefGoogle Scholar
  5. Chase T. N. and Oh J. D, 2000, Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci. 23: S86–S91.CrossRefGoogle Scholar
  6. Ciruela F., Casado V., Mallol J., Canela E. I., Lluis C. and Franco R., 1995, Immunological identification of A1 adenosine receptors in brain cortex., J. Neurosci. Res. 42: 818–828.PubMedCrossRefGoogle Scholar
  7. Devi L. and Brady L, 2000, Dimerization of G-protein coupled receptors, Neuropsychopharmacology 23: S3–S4.CrossRefGoogle Scholar
  8. Fenu S, Cauli O. and Morelli M, 2000, Cross-sensitization between the motor activating effects of bromocriptine and cafffeine: role of adenosine A2A receptors. Behav. Brain Res. 114: 97–105.PubMedCrossRefGoogle Scholar
  9. Ferré S, 1997, Adenosine-dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia, Psychopharmacology. 133: 107–120.PubMedCrossRefGoogle Scholar
  10. Ferré S, Fredholm B, Morelli M, Popoli P. and Fuxe K, 1997, Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia, Trends Neurosci. 20: 482–487.PubMedCrossRefGoogle Scholar
  11. Ferré S. and Fuxe K, 2000, Adenosine as a volume transmission signal. A feedback detector of neuronal activation. In Progress in Brain Research, L. F. Agnati, K. Fuxe, C. Nicholson and E. Syková, eds, Vol.125, Elsevier, Amsterdam, pp. 353–361.Google Scholar
  12. Ferré S, Torvinen M, Antoniou K, Irenius E, Civelli O, Arenas E, Fredholm B. B. and Fuxe K, 1998, Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells, J. Biol. Chem. 273: 4718–4724.PubMedCrossRefGoogle Scholar
  13. Franco R, Ferré S, Agnati L. F, Torvinen M, Gines S, Hillion J, Casado V, Lledo P, Zoli M, Lluis C. and Fuxe K, 2000, Evidence for adenosine/dopamine receptor interactions. Indications for heteromerization, Neuropsychopharmacology. 23: 50–59.CrossRefGoogle Scholar
  14. Fuxe K, Agnati L. F, Benfenati F, Celani M. F, Zini I, Zoli M. and Mutt V, 1983, Evidence for the existence of receptor- receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides, J. Neural Transm. 18: 165–179.Google Scholar
  15. Fuxe K, Ferré S, Zoli M. and Agnati L. F, 1998, Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia, Brain Res Rev. 26: 258–273.PubMedCrossRefGoogle Scholar
  16. Fuxe K, Strömberg I, Popoli P, Rimondini-Giorgini R, Torvinen M, Ögren S. O, Franco R, Agnati L. F. and Ferré S, 2001, Adenosine receptors and Parkinson’s Disease. Relevance of antagonistic adenosine and dopamine receptor interactions in the striatum. In Parkinson’s Disease, D. Calne and S. Calne, eds, Vol.86, Lippincott Williams & Wilkins, Philadelphia, pp. 345-.Google Scholar
  17. Ginés S, Hillion J, Torvinen M, LeCrom S, Casado V, Canela E, Rondin S, Lew J, Watson S, Zoli M, Agnati L, Vernier P, Lluis C, Ferré S, Fuxe K. and Franco R, 2000, Dopamine Dl and adenosine Al receptors assemble into functionally interacting heteromeric complexes, Proc. Natl. Acad. Sci. 97: 8606–8611.PubMedCrossRefGoogle Scholar
  18. Greengard P, Nairn A. c, Girault J.-A, Ouimet C. C, Snyder G. L, Fisone G, Allen P. B, Fienberg A. and Nishi A, 1998, The DARPP-32/protein phosphatase-1 cascade: a model for signal integration, Brain Res. Rev. 26: 274–284.PubMedCrossRefGoogle Scholar
  19. Hillion J, Canals M, Torvinen M, Casadó V, Scott R, Terasmaa A, Hansson A, Watson S, Olah M. E, Mallol J, Canela E. I, Zoli M, Agnati L. F, Ibanez C. F, Lluis C, Franco R, Ferré S. and Fuxe K, 2001, Coaggregation, cointernalization and codesensitization of adenosine A2A receptors and dopamine D2 receptors, PNAS (submitted).Google Scholar
  20. Rimondini R, Ferré S, Ögren S. O. and Fuxe K, 1997, Adenosine A2A agonists: A potential new type of atypical antipsychotic, Neuropsychopharmacology. 17: 82–91.PubMedCrossRefGoogle Scholar
  21. Rimondini R, Fuxe K. and Ferré S, 1999, Multiple intramembrane receptor-receptor interactions in the regulation of striatal dopamine D2 receptors, NeuroReport. 10: 2051–2054.PubMedCrossRefGoogle Scholar
  22. Rosin D. L, Robeva A. S, Woodard R. L, Guyenet P. G. and Linden J, 1998, Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system, J. Comp. Neurol. 401: 163–186.PubMedCrossRefGoogle Scholar
  23. Salahpour A., Angers S. and Bouvier M., 2000, Functional significance of oligomerization of G protein coupled receptors., TEM. 11: 163–168.PubMedGoogle Scholar
  24. Schiffmann S, Jacobs O. and Vanderhaeghen J.-J, 1991, Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study, J Neurochem. 57: 1062–1067.PubMedCrossRefGoogle Scholar
  25. Strömberg I, Popoli P, Müller C. E, Ferré S. and Fuxe K, 2000, Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatum, Eur. J. Neurosci. 12: 4033–4037.PubMedCrossRefGoogle Scholar
  26. Tallman J, 2000, Dimerization of G-protein coupled receptors. Implications for drug design and signaling, Neuropsychopharmacology. 23: S1-S2.CrossRefGoogle Scholar
  27. Zoli M, Agnati L, Hedlund P, Li X, Ferré S. and Fuxe K, 1993, Receptor-receptor interactions as an integrative mechanism in nerve cells, Mol Neurobiol. 7: 293–334.PubMedCrossRefGoogle Scholar
  28. Zoli M, Guidolin D, Fuxe K. and Agnati L, 1996, The receptor mosaic hypothesis of the engram: Possible relevance of Boolean network modeling, Int. J. Neural Systems. 7: 363–368.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Kjell Fuxe
    • 1
  • Sergi Ferré
    • 1
  • Maria Torvinen
    • 1
  • Jöelle Hillion
    • 1
  • Ingrid Strömberg
    • 1
  • Ove Franzén
    • 1
  • Carlos Ibanéz
    • 1
  • Michele Zoli
    • 2
  • Carmen Lluis
    • 3
  • Luigi F. Agnati
    • 2
  • Rafael Franco
    • 3
  1. 1.Department of NeuroscienceKarolinska InstitutetStockholmSweden
  2. 2.Department of Biomedical SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Department of Biochemistry and Molecular Biology, IDIBAPSUniversity of BarcelonaBarcelonaSpain

Personalised recommendations