Advertisement

Analysis of Dopamine D4 Receptor Function in Gene Knockout Mice: A Role in Cortical Excitability

  • Malcolm J. Low
  • David K. Grandy
  • Marcelo Rubinstein
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)

Abstract

The prefrontal cortex (PFC) integrates diverse environmental stimuli and contextual cues to appropriately regulate the temporal organization and execution of motor behaviors. Mesocortical dopamine (DA) projections from the ventral tegmental area play a key role in the modulation of these signals to influence complex processes such as arousal, attention, vigilance, novelty-induced stress and learning. Both DA release and turnover rates in the PFC are increased by stress (Roth et al., 1988), while manipulations that attenuate DA transmission in the PFC impair alertness, behavioral reactions to stress and working memory performance. D1-like receptor agonists promote seizure activity in the PFC and conversely, stimulation of D2-like DA receptors is anticonvulsant and diminishes the electrical excitability of pyramidal neurons in the PFC (Starr, 1996). Among the members of the D2-like receptor family, the D4R has been of particular interest because it is densely expressed in the PFC and it has high affinity for various atypical antipsychotics (Van Tol et al., 1991). In addition, the D4R has been implicated in the pathophysiology of psychiatric diseases that involve PFC malfunction such as attention-deficit with hyperactivity disorder and schizophrenia (Seeman et al., 1993). At the molecular-genetic level some alleles of the highly polymorphic human D4R gene (DRD4) have been associated with human diseases, personality traits including attention deficit hyperactivity disorder, opiate and alcohol use, and novelty-seeking behavior.

Keywords

Pyramidal Neuron Cortical Excitability Cortical Hyperexcitability Mesocortical Dopamine Striatal Brain Slice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cepeda, C., Altemus, K.L., Hurst, R.S., Flores-Hernandez, J., Calvert, C., Jokel, E.S., Grandy, D.K., Low, M.J., Rubinstein, M., Ariano, M.A., Levine MS., 2001, Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice, J. Neurophysiol. 85:659.PubMedGoogle Scholar
  2. Dulawa, S.C., Grandy, D.K., Larson, J.L., Low, M.J., Paulus, M., Geyer, M.A., 1999, Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli, J. Neurosci. 19:9550.PubMedGoogle Scholar
  3. Ralph, R.J., Varty, G.B., Kelly, M.A., Wang, Y.-M., Caron M.G., Rubinstein, M., Grandy, D.K., Low, M.J., Geyer, M.A., 1999, The dopamine D2, but not D3, or D4 receptor subtype is essential for the disruption of prepulse inhibition produced by amphetamine in mice, J. Neurosci. 19:4627.PubMedGoogle Scholar
  4. Roth, R.H., Tarn, S.-Y., Ida, I., Yang, J.-X., Deutsch, A.Y., 1988, Stress and the mesocorticolimbic dopamine systems, Ann. NY. Acad. Sci. 537:138.PubMedCrossRefGoogle Scholar
  5. Rubinstein, M., Cepeda, C., Hurst, R.S., Flores-Hernandez, J., Ariano, M.A., Falzone, T.L., Kozell, L.B., Meshul, C.K., Bunzow, J.R, Low, M.J., Levine, M.S., Grandy, D.K., 2001, Dopamine D4 receptor-deficient mice display cortical hyperexcitability, J. Neurosci. 21:3756.PubMedGoogle Scholar
  6. Rubinstein, M., Phillips, T.J., Bunzow, J.R., Falzone, T.L., Dziewczapolski, G., Zhang, G., Fang, Y., Larson, J.L., McDougall, J.A., Chester, J.A., Saez, C., Pugsley, T.A., Gershanik, O., Low, M.J., Grandy, D.K., 1997, Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and metamphetamine, Cell 90:991.PubMedCrossRefGoogle Scholar
  7. Seeman, P., Guan, H.-C., Van Tol, H.H.M., 1993, Dopamine D4 receptors elevated in schizophrenia, Nature 365:441.PubMedCrossRefGoogle Scholar
  8. Starr, M., 1996, The role of dopamine in epilepsy, Synapse 22:159.PubMedCrossRefGoogle Scholar
  9. Van Tol, H.H.M., Bunzow, J.R., Guan, H.-C., Sunahara, R.K., Seeman, P., Niznik, H.B., Civelli, O., 1991, Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine, Nature 350:610.PubMedCrossRefGoogle Scholar
  10. Werner, P., Hussy, N., Buell, G., Jones, K.A., North, R., 1996, D2, D3, and D4 dopamine receptors couple to G protein-regulated potassium channels in Xenopus oocytes, Mol. Pharmacol. 49:656.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Malcolm J. Low
    • 1
  • David K. Grandy
    • 2
  • Marcelo Rubinstein
    • 3
  1. 1.Vollum InstituteOregon Health & Science UniversityPortlandUSA
  2. 2.Department of Physiology and PharmacologyOregon Health & Science UniversityPortlandUSA
  3. 3.Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (CONICET) and Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations