Interaction between Glutamate and Monoamines

Modulation of glutamatergic neurotransmission by dopamine D1 and 5-HT2A receptors
  • Tomohiro Abekawa
  • Minoru Honda
  • Tsukasa Koyama
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)


Electrophysiological studies revealed that in the prefrontal cortex(PFC), dopamine has an inhibitory action via dopamine D1 receptor,1 and serotonin has an excitatory action via 5-HT2A receptor,2 on glutamatergic neurotransmission. The changes in activity of glutamatergic pyramidal neurons play an important role in pathogenesis of phencyclidine(PCP)-induced psychosis3 or schizophrenia.4 However, neurochemical basis for the modulation of glutamatergic neurotransmission in the PFC is not well known. In this chapter, we present data on the effects of stimulation or blockade of dopamine D1 receptor, and blockade of 5-HT2A receptor or dopamine D4 receptor on basal levels or PCP-induced increases in extracellular concentrations of glutamate.


Glutamate Level Apical Dendrite Glutamatergic Neurotransmission High Performance Liquid Chromatographic Determination Glutamatergic Pyramidal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.D. Law, J.C. Hirsch, F. Crepel, Dopamine modulation of synaptic transmission in rat prefrontal cortex: an in vivo electrophysiological study, Neurosci. Res. 21, 151–160 (1994).CrossRefGoogle Scholar
  2. 2.
    G.K. Aghajanian, G.J. Marek, Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells, Neuropharmacol. 36, 589–599 (1997).CrossRefGoogle Scholar
  3. 3.
    B. Adams, B. Moghaddam, Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine, J. Neurosci. 18, 5545–5554 (1998).PubMedGoogle Scholar
  4. 4.
    P.S. Goldman-Rakic, L.D. Selemon, Functional and anatomical aspects of prefrontal pathology in schizophrenia, Schizophr. Bull. 23, 437–445 (1997).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Lindroth, K. Mopper, High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde, Anal Chem. 51, 1667–1674.Google Scholar
  6. 6.
    T. Abekawa, T. Ohmori, T. Koyama, D1 dopamine receptor activation reduces extracellular glutamate and GABA concentrations in the medial prefrontal cortex, Brain Res. 867, 250–254 (2000).PubMedCrossRefGoogle Scholar
  7. 7.
    J.F. Smiley, A.I. Levey, B.J. Ciliax, P.S. Goldman-Rakic, D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines, Proc. Natl. Acad. Sci. USA 91, 5720–5724 (1994).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Hernandez-Lopez, J. Bargas, D.J. Surmeier, A. Reyes, E. Galarraga, D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an Ca2+ conductance, J. Neurosci. 17, 3334–3342 (1997).PubMedGoogle Scholar
  9. 9.
    R.L. Jakab, P.S. Goldman-Rakic, 5-hydrotryptamine 2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites, Proc. Natl, Acad. Sci. USA 95, 735–740 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Tomohiro Abekawa
    • 1
  • Minoru Honda
  • Tsukasa Koyama
  1. 1.Department of Psychiatry, Graduate School of MedicineHokkaido UniversitySapporoJapan

Personalised recommendations