Molecular Genetics of Catecholamines: Key Molecules Bridging Basic Science with Clinical Science

  • Toshiharu Nagatsu
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)


Sidney Udenfriend (1918–1999) was one of the great pioneers in catecholamine (CA) research, and opened the way for the development of CA’s as the key molecules bridging basic science with clinical science. The history of CA research is summarized in Table 1. CA’s in vivo are composed of dopamine (DA), norepinephrine (NE) [noradrenaline (NA)], and epinephrine (EN) [adrenaline (AD)]. Historically, in 1898 John Jacob Abel first isolated an active CA compound in the adrenal medulla and named it EPINEPHRINE. Then, two years later., Jokiti Takamine isolated and crystallized the same active compound from the adrenal medulla and named it ADRENALIN. Later, ADRENALINE became the generic name. Thus EN/AD was discovered as a hormone in the adrenal medulla. Ulf S. von Euler (1946) discovered a CA neurotransmitter in the peripheral sympathetic nerves and named it NORADRENALINE, which is also called NOREPINEPHRINE. Then NE/NA and EN/AD were also found in the brain as neurotransmitters. This is the historical reason for having two names, EPINEPHRINE (EN) / ADRENALINE (AD) and NOREPINEPHRINE (NE) / NORADRENALINE (NA), for the same two molecules. Arvid Carlsson (1958) discovered DOPAMINE (DA), which is also called 3-HYDROXYTYRAMINE, as yet another CA neurotransmitter in the brain.


Tyrosine Hydroxylase Adrenal Medulla Tyrosine Hydroxylase Gene Conditioned Taste Avoidance Human Tyrosine Hydroxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod, J. 1957, O-Methylation of epinephrine and other catecholamines in vitro and in vivo, Science 126: 400–401.PubMedCrossRefGoogle Scholar
  2. Axelrod J., Weil-Malherbe, H., and Tomchick, R., 1959, The physiological disposition of H3-epinephrine and its metabolite metanephrine, J. Pharmacol. Exp. Therap. 127: 251–256.Google Scholar
  3. Betarbet, R., Sherer, T. B., Mackenzie, G., Garcia-Osuna, M., Panov, A. V., Greenamyre, J. T., 2001, Chronic systemic pesticide exposure reproduces features of Parkinson’s disease, Nature Neurosci. 3: 1301–1306.Google Scholar
  4. Blaschko, H., Richtei, D., and Schlossmann, H., 1937, The oxidation of adrenaline and other amines, Biochem. J.31:2187–2196.PubMedGoogle Scholar
  5. Blaschko, H., 1939, The specific action of L-dopa decarboxylase, J. Physiol. 96: 509.Google Scholar
  6. Carlsson A., Lindquist, M., Magnusson, T., and Waldeck, B., 1958, On the presence of 3-hydroxytyramine in brain, Science 127: 471.PubMedCrossRefGoogle Scholar
  7. Carlsson, A., 1959, The occurrence, distribution and physiological role of dopamine in the nervous systeM., Pharmacol. Rev. 11: 490–493.PubMedGoogle Scholar
  8. Ehringer, H., and Homykiewicz, O., 1960, Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems, Klin. Wschr. 38: 1236–1239.PubMedCrossRefGoogle Scholar
  9. Euler, U. S. von, 1946, A specific sympathomimetic ergone in adrenergic nerve fibers (Sympathin) and its relation to adrenaline and noradrenaline, Acta Physiol. Scand. 12:73–97.CrossRefGoogle Scholar
  10. Goldstein, D. S., Eisenhofer, G., and Mccarty, R., 1998, Catecholamines: Bridging Basic Science with Clinical Medicine, Adv. Pharmacol. 42: 1–1069.Google Scholar
  11. Grima, B., Lamouroux, A., Blanot, F., Biguet, N. F., and Mallet, J., 1985, Complete coding sequence of rat tyrosine hydroxylase mRNA, Proc. Natl. Acad. Sci. USA 82: 617–621.PubMedCrossRefGoogle Scholar
  12. Grima, B., Lamouroux, A., Boni, C., Julien, J. F., Javoy-Agid, F., and Mallet, J., 1987, A single human gene encoding multiple tyrosine hydroxylase with different predicted functional characteristics, Nature 326: 707–711.PubMedCrossRefGoogle Scholar
  13. Holtz, R., 1939, Dopadecarboxylase, Naturwissenschaften, 27: 724–725.CrossRefGoogle Scholar
  14. Ichikawa, S., Ichinose, H., and Nagatsu, T., 1990, Multiple mRNAs of monkey tyrosine hydroxylase, Biochem. Biophys. Res. Commun. 173: 1331–1336.PubMedCrossRefGoogle Scholar
  15. Ichikawa, S., Sasaoka, T., and Nagatsu, T., 1991, Primary structure of mouse tyrosine hydroxylase deduced from its cDNA, Biochem. Biophys. Res. Commun. 176: 1610–1616.PubMedCrossRefGoogle Scholar
  16. Ichinose, H., Sumi-Ichinose, C., Ohye, T., Hagino, Y., Fujita, K., and Nagatsu, T., 1992, Tissue-specific alternative splicing of the first exon generates two types of mRNAs in human aromatic L-amino acid decarboxylase, Biochemistry 31:11546–11550.PubMedCrossRefGoogle Scholar
  17. Ichinose, H., Ohye, T., Fujita, K., Yoshida, M., Ueda, S., and Nagatsu, T., 1993, Increased heterogeneity of tyrosine hydroxylase in humans, Biochem. Biophys. Res. Commun. 195: 158–165.PubMedCrossRefGoogle Scholar
  18. Ichinose, H., Ohye, T., Takahashi, E., Seki, N., Hori, T., Segawa, M., Nomura, Y., Endo, K., Tanaka, H., Tsuji, S., Fujita, K., and Nagatsu, T., 1994a, Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations of the GTP cyclohydrolase I gene, Nature Genet. 8: 236–242.CrossRefGoogle Scholar
  19. Ichinose, H., Ohye, T., Fujita, K., Pantucek, K., Lange, K., Riederer, R., and Nagatsu, T. 1994b, Quantification of mRNA of tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the substantia nigra in Parkinson’s disease and schizophrenia, J. Neural Transm. [P-D Sect] 8: 149–158.CrossRefGoogle Scholar
  20. Ichinose, H., Ohye, T., Matsuda, Y., Hori, T., Blau, N., Burlina, A., Rouse, B., Matalon, R., Fujita, K., and Nagatsu, T., 1995, Characterization of mouse and human GTP cyclohydrolase I genes: Mutations in patients with GTP cyclohydrolase I deficiencY., J. Biol. Chem. 270: 10062–10071.PubMedCrossRefGoogle Scholar
  21. Ishiguro, H., Yamada, K., Ichino, N., and Nagatsu, T., 1998 Identification and characterization of a novel phorbol ester-responsive DNA sequence in the 5’-flanking region of the human dopamine beta- hydroxylase gene, J. Biol. Chem. 273: 21941–21949.PubMedCrossRefGoogle Scholar
  22. Iwata, N., Kobayashi, K., Sasaoka, T., Hidaka, H., and Nagatsu, T., 1992, Structure of the mouse tyrosine hydroxylase gene, Biochem. Biophys. Res. Commun. 182: 348–354.PubMedCrossRefGoogle Scholar
  23. Kaneda, N., Kobayashi, K., Ichinose, H., Kishi, F., Nakazawa, A., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1987, Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative mRNA splicing produces four kinds of mRNA from a single gene, Biochem. Biophys. Res. Commun. 146: 971–975.PubMedCrossRefGoogle Scholar
  24. Kaneda, N., Ichinose, H., Kobayashi, K., Oka, K., Kishi, F, Nakazawa, A., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1988, Molecular cloning of cDNA and chromosomal assignment of the gene for human phenylethanolamine N-methyltransferase, the enzyme for epinephrine biosynthesis, J. Biol. Chem. 263: 7672–7677.PubMedGoogle Scholar
  25. Kaneda, N., Sasaoka, T., Kobayashi, K., Kiuchi, K., Nagatsu, I., Kurosawa, Y., Fujita, K., Yokoyama, M., Nomura, T., Katsuki, M., and Nagatsu, T., 1991, Tissue-specific and high-level expression of the human tyrosine hydroxylase gene in transgenic mice, Neuron 6: 583–594.PubMedCrossRefGoogle Scholar
  26. Kaneko S., Hikida T., Watanabe D., Ichinose H., Nagatsu T., Kreitman R. J., Pastan L, and Nakanishi S., 2000, Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function, Science 289: 633–637.PubMedCrossRefGoogle Scholar
  27. Kaufman, S., 1963, The structure of the phenylalanine-hydroxylation cofactoR., Proc. Natl. Acad. Sci. USA 50: 1085–1093.PubMedCrossRefGoogle Scholar
  28. Knappskog, P. M., Flatmark, T., Mallet, J., Lüdecke, B., and Bartholomé, K., 1995, Recessively inherited L-DOPA-responsive dystonia caused by a point mutation (Q381k) in the tyrosine hydroxylase gene, Human Mol. Genet. 4: 1209–1212.CrossRefGoogle Scholar
  29. Kobayashi, K., Kaneda, N., Ichinose, H., Kishi, F., Nakazawa, A., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1988, Structures of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types, J. Biochem. 103: 907–912.PubMedGoogle Scholar
  30. Kobayashi, K., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1989, Human dopamine beta-hydroxylase gene: two mRNA types having different 3’-terminal regions are produced through alternative polyadenylation, Nucleic Acids Res. 17: 1089–1102.PubMedCrossRefGoogle Scholar
  31. Kobayashi, K., Sasaoka, T., Monta, S., Nagatsu, I., Iguchi, A., Kurosawa, Y., Fujita, K., Nomura, T., Kimura, M., Katsuki, M., and Nagatsu, T., 1992, Genetic alteration of catecholamine specificity in transgenic mice, Proc. Natl. Acad. Sci. USA 89: 1631–1635.PubMedCrossRefGoogle Scholar
  32. Kobayashi, K., Monta, S., Mizuguchi, T., Sawada, H., Yamada, K., Nagatsu, I., Fujita, K., and Nagatsu, T., 1994, Functional and high-level expression of human dopamine beta-hydroxylase in transgenic mice, J. Biol. Chem. 269: 29725–29731.PubMedGoogle Scholar
  33. Kobayashi, K., Monta, S., Sawada, H., Mizuguchi, T., Yamada, K., Nagatsu, I, Hata, T., Watanabe, Y., Fujita, K., and Nagatsu, T., 1995a, Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice, J. Biol. Chem. 270: 27235–27243.CrossRefGoogle Scholar
  34. Kobayashi, K., Ota, A., Togari, A., Monta, S., Mizuguchi, T., Sawada, M., Yamada, K., Nagatsu, I., Matsumoto, S., Fujta, K., and Nagatsu, T., 1995b, Alteration of catecholamine phenotype in transgenic mice influences expression of adrenergic receptor subtypes, J. Neurochem. 65: 492–501.CrossRefGoogle Scholar
  35. Kobayashi, K., Monta, S., Sawada, H., Mizuguchi, T., Yamada, K., Nagatsu, L, Fujita, K., Kreitman, R. J., Pastan, I., and Nagatsu, T., 1995C., Immunotoxin-mediated conditional disruption of specific neurons in transgenic mice, Proc. Nail. Acad. Sci. USA 92: 1132–1136.CrossRefGoogle Scholar
  36. Kobayashi, K., Pastan, I., Nagatsu, T., 1997, Controlled genetic ablation by immunotoxin-mediated cell targeting, in: Transgenic Animals : L. M. Houdebine ed., Harwood Academic Publishers, Amsterdam, pp.331–336.Google Scholar
  37. Kobayashi, K., and Nagatsu, T., 2000, Transgenic rescue of tyrosine hydroxylase-deficient mice: application for generating animal models with catecholamine dysfunction, in: Progress in Gene Therapy: Basic and Clinical Frontiers., R. Bertolotti, S. H. Parvez, and T. Nagatsu, eds., VSP, Utrecht, pp. 267–288.Google Scholar
  38. Kobayashi K., Noda Y., Matsushita N., Nishii K., Sawada H., Nagatsu T., Nakahara D., Fukabori R., Yasoshima Y., Yamamoto T., Miura M., Kano M., Miyama T., Miyamoto Y., and Nabeshima T., 2000, Modest neuropsychological deficits caused by reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene, J. Neurosci. 20: 2418–2426.PubMedGoogle Scholar
  39. Lovenberg, W., Weissbach, H., and Udenfriend, S., 1962, Aromatic L-amino acid decarboxylase, J. Biol. Chem. 237: 89–93.PubMedGoogle Scholar
  40. Lüdecke, B., Knappskog, P. M., Clayton, P. T., Surtees, R. A. H., Clelland, J. D., Heales, S. J. R., Brand, M. P., Bartholomé, K., and Flatmark, T., 1996, Recessively inherited L-DOPA-responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene, Human Mol. Genet. 5: 1023–1028.CrossRefGoogle Scholar
  41. Morita, S., Kobayashi, K., Muzuguchi, T., Yamada, K., Nagatsu, I., Titani, K., Fujita, K., Hidaka, H., and Nagatsu, T., 1993, The 5’-flanking region of human dopamine beta-hydroxylase gene promotes the neuron subtype-specific gene expression in the central nervous system of transgenic mice, Mol. Brain Res. 17: 239–244.PubMedCrossRefGoogle Scholar
  42. Nagatsu, T., Levitt, M., and Udenfriend, S., 1964, Tyrosine hydroxylase-the initial step in norepinephrine biosynthesis, J. Biol. Chem. 239, 2910–2917.PubMedGoogle Scholar
  43. Nagatsu, T., and Kojima, K., 1988, Application of electrochemical detection in HPLC to the assay of biologically active compounds, Trends Anal. Chem. 7: 21–27.CrossRefGoogle Scholar
  44. Nagatsu, T., 1991, Application of high-performance liquid chromatography to the study of biogenic amine- related enzymes, J. Chromatogr. Biomed. Appl. 566: 287–307.CrossRefGoogle Scholar
  45. Nagatsu, T., 1991, Genes for human catecholamine-synthesizing enzymes, Neurosci. Res. 12: 315–345.PubMedCrossRefGoogle Scholar
  46. Nagatsu, T., and Ichinose, H., 1991, Comparative studies on the structure of human tyrosine hydroxylase with those of the enzyme of various mammals, Comp. Biochem. Physiol., 98C: 203–210.Google Scholar
  47. Nagatsu, T., 1993, Biochemical aspects of Parkinson’s disease, in: Advances in Neurology, Vol. 60. Parkinson’s Disease: From Basic Research To Treatment, H. Narabayashi, T. Nagatsu, N. Yanagisawa, Y Mizuno, eds., Raven Press, New York, pp. 165–174.Google Scholar
  48. Nagatsu, T., 1995, Tyrosine hydroxylase: human isoforms, structure and regulation in physiolosy and pathologY., in: Essays in Biochemistry Vol.30, D. K. Apps, K. F Tipton, eds., Portland Press, London, pp. 15–35.Google Scholar
  49. Nagatsu, T., 1997, Isoquinoline neurotoxins in the brain and Parkinson’s disease, Neurosci. Res. 29: 99–111.PubMedCrossRefGoogle Scholar
  50. Nagatsu T., and Ichinose H., 1999, Regulation of pteridine-requiring enzymes by the cofactor tetrahydrobiopterin, Mol. Neurobiol. 19: 79–96.PubMedCrossRefGoogle Scholar
  51. Nagatsu T., Mogi M., Ichinose H., and Togari A., 2000, Changes in cytokines and neurotrophins in Parkinson’s disease, J. Neural Transm. [Suppl] 60: 277–290.Google Scholar
  52. Narabayashi, H., Kondo, T., Nagatsu, T., Hayashi, A., and Suzuki, T., 1984, DL-Threo-3,4-dihydroxyphenylserine for freezing symptom in parkinsonisM., in: Advances in Neurology, Vol. 40, R. G. Hassler, J. F Christ, eds., Raven Press, New York, pp. 497–502.Google Scholar
  53. Nichol, C. A., Smith, G. K., and Duch, D. S., 1985, Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin, Ann. Rev. Biochem. 54: 729–762.PubMedCrossRefGoogle Scholar
  54. Nishii, K., Matsushita, N., Sawada, H., Sano, H., Noda, Y., Mamiya, T., Nabeshima, T., Nagatsu, L, Hata, T., Kiuchi, K., Yoshizato, H., Nakashima, K., Nagatsu, T., and Kobayashi, K., 1998, Motor and learning dysfunction during postnatal development in mice defective in DA neuronal transmission, J. Neurosci. Res., 54: 450–464.PubMedCrossRefGoogle Scholar
  55. Nomura, T., Tazawa, M., Ohtsuki, M., Ichinose, C. S., Hagino, Y., Ota, A., Nakashima, A., Mori, K., Sugimoto, T., Ueno, O., Yazawa, Y., Ichinose, H., and Nagatsu, T., 1998, Enzymes related to catecholamine biosynthesis in tetrahymena pyriformis. Presence of GTP cyclohydroxylase I, Comp. Biochem. Physiol. B 120: 753–760.PubMedCrossRefGoogle Scholar
  56. Ogiwara, S., Nagatsu, T., Teradaira, R., Fujita, K., and Sugimoto, T., 1992, Diastereomers of neopterin and biopterin in human urine, Biol. Chem. Hoppe-Seyler, 373: 1061–1065.PubMedCrossRefGoogle Scholar
  57. O’malley, K. L., Anhalt, M. J., Martin, B. M., Kalsoe, J. R., Winfield, S. L., and Ginns, E. I., 1987, Isolation and characterization of the human tyrosine hydroxylase gene: identification of 5’ alternative splice sites responsible for multiple mRNAs, Biochemistry 26: 6910–6914.PubMedCrossRefGoogle Scholar
  58. Robertson, D., and Hale, N., 1998, Genetic disease of hypotension, Adv. Pharmacol. 42: 61–65.PubMedCrossRefGoogle Scholar
  59. Sasaoka, T., Kaneda, N., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1989, Structure of human phenylethanolamine N-methyltransferase gene: existence of two types of mRNA with different transcription initiation sites, Neurochem. Int. 15: 555–565.PubMedCrossRefGoogle Scholar
  60. Sasaoka, T., Kobayashi, K., Nagatsu, I., Takahashi, R., Kimura, M., Yokoyama, M., Nomura, T., Katsuki, M., and Nagatsu, T., 1992, Analysis of the human tyrosine hydroxylase promoter-chloramphenicol acetyltransferase chimeric gene expression in transgenic mice, Mol. Brain Res. 16: 274–286.PubMedCrossRefGoogle Scholar
  61. Sawada, H., Nishii, K., Suzuki T., Hasegawa, K., Hata, T., Nagatsu, I., Kreitman, R. J., Pastan, I., Nagatsu, T., and Kobayashi, K., 1998, Autonomic neuropathy in transgenic mice caused by immunotoxin targeting of the peripheral nervous systeM., J. Neurosci. Res. 51: 162–173.PubMedCrossRefGoogle Scholar
  62. Shen, Y., Muramatsu, S., Dceguchi, K., Fujimoto, K., Fan, D. S., Ogawa, M., Mizukami, H., Urabe, M., Kume, A., Nagatsu, I., Urano, F., Suzuki, T., Ichinose, H., Nagatsu, T., Monahan, J., Nakano, I., and Ozawa, K., 2000, Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic- L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease, Human Gene Therapy 11: 1509–1519.PubMedCrossRefGoogle Scholar
  63. Sugimoto, T., Dcemoto, K., Murata, S., Tazawa, M., Nomura, T., Hagino, Y., Ichinose, H., and Nagatsu, T., 2001, Identification of (6R)-5,6,7,8-tetrahydro-D-monapterin as the native pteridine in Tetrahymena pyriformis, Helv. Chim. Acta 84: 918–927.CrossRefGoogle Scholar
  64. Sumi-Ichinose, C., Ichinose, H., Takahashi, E., Hori, T., and Nagatsu, T., 1992, Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis, Biochemistry 31: 2229–2238.PubMedCrossRefGoogle Scholar
  65. Thomas, S. A., Matsumoto, A. M., and Palmiter, R. D., 1995, Noradrenaline is essential for mouse fetal developmenT., Nature 374: 643–646.PubMedCrossRefGoogle Scholar
  66. Thöny, B., Auerbach, G., and Blau, N., 2000, Tetrahydrobiopterin biosynthesis, regeneration and functions, Biochem. J. 347: 1–16.PubMedCrossRefGoogle Scholar
  67. Togari, A., Ichinose, H., Matsumoto, S., Fujita, K., and Nagatsu, T., 1992, Multiple mRNA forms of human GTP cyclohydrolase I, Biochem. Biophys. Res. Commun. 187: 359–365.PubMedCrossRefGoogle Scholar
  68. Udenfriend, S., and Cooper, J. R., 1952, The enzymatic conversion of phenylalanine to tyrosine, J. Biol. Chem. 194:503–511.PubMedGoogle Scholar
  69. Udenfriend, S., Cooper, J. R., Clark, C. T., and Baer, J. E., 1953, Rate of turnover of epinephrine in the adrenal medulla, Science 117: 663–665.PubMedCrossRefGoogle Scholar
  70. Udenfriend, S., and Wyngaarden, J. B., 1956, Precursors of adrenal epinephrine and norepinephrine in vivo, Biochim. Biophys. Acta 20: 48–52.PubMedCrossRefGoogle Scholar
  71. Udenfriend, S., 1962, Fluorescence Assay in Biology and Medicine Vol. 1, Academic Press, New York.Google Scholar
  72. Udenfriend, S., 1969, Fluorescence Assay in Biology and Medicine, Vol. 2, Academic Press, New York.Google Scholar
  73. Watanabe, D., Inokawa, H., Hashimoto, K., Suzuki, N., Kano, M., Shigemoto, R., Hirano, T., Toyama, K., Kaneko, S., Yokoi, M., Moriyoshi, K., Suzuki, M., Kobayashi, K., Nagatsu, T., Kreitman, R. J., Pastan, I., and Nakanishi, S., 1998, Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination, Cell 95: 17–27.PubMedCrossRefGoogle Scholar
  74. Wallas, S. I., and Greengard, P., 1984, DARPP-32, a dopamine and adenosine 3′: 5″-monophosphate regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J. Neurosci. 4: 84–88.Google Scholar
  75. Wolfe, D. E., Potter, L. T., Richardson, K. C., and Axelrod, J., 1962, Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiographY., Science 138: 440–442.PubMedCrossRefGoogle Scholar
  76. Zhou, Q. Y., Quaife, C. J., and Palmiter, R. D., 1995, Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development., Nature 374: 640–643.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Toshiharu Nagatsu
    • 1
  1. 1.Institute for Comprehensive Medical ScienceFujita Health UniversityToyoake, AichiJapan

Personalised recommendations