Skip to main content

Molecular Genetics of Catecholamines: Key Molecules Bridging Basic Science with Clinical Science

  • Chapter
Catecholamine Research

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 53))

  • 33 Accesses

Abstract

Sidney Udenfriend (1918–1999) was one of the great pioneers in catecholamine (CA) research, and opened the way for the development of CA’s as the key molecules bridging basic science with clinical science. The history of CA research is summarized in Table 1. CA’s in vivo are composed of dopamine (DA), norepinephrine (NE) [noradrenaline (NA)], and epinephrine (EN) [adrenaline (AD)]. Historically, in 1898 John Jacob Abel first isolated an active CA compound in the adrenal medulla and named it EPINEPHRINE. Then, two years later., Jokiti Takamine isolated and crystallized the same active compound from the adrenal medulla and named it ADRENALIN. Later, ADRENALINE became the generic name. Thus EN/AD was discovered as a hormone in the adrenal medulla. Ulf S. von Euler (1946) discovered a CA neurotransmitter in the peripheral sympathetic nerves and named it NORADRENALINE, which is also called NOREPINEPHRINE. Then NE/NA and EN/AD were also found in the brain as neurotransmitters. This is the historical reason for having two names, EPINEPHRINE (EN) / ADRENALINE (AD) and NOREPINEPHRINE (NE) / NORADRENALINE (NA), for the same two molecules. Arvid Carlsson (1958) discovered DOPAMINE (DA), which is also called 3-HYDROXYTYRAMINE, as yet another CA neurotransmitter in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelrod, J. 1957, O-Methylation of epinephrine and other catecholamines in vitro and in vivo, Science 126: 400–401.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J., Weil-Malherbe, H., and Tomchick, R., 1959, The physiological disposition of H3-epinephrine and its metabolite metanephrine, J. Pharmacol. Exp. Therap. 127: 251–256.

    CAS  Google Scholar 

  • Betarbet, R., Sherer, T. B., Mackenzie, G., Garcia-Osuna, M., Panov, A. V., Greenamyre, J. T., 2001, Chronic systemic pesticide exposure reproduces features of Parkinson’s disease, Nature Neurosci. 3: 1301–1306.

    Google Scholar 

  • Blaschko, H., Richtei, D., and Schlossmann, H., 1937, The oxidation of adrenaline and other amines, Biochem. J.31:2187–2196.

    PubMed  CAS  Google Scholar 

  • Blaschko, H., 1939, The specific action of L-dopa decarboxylase, J. Physiol. 96: 509.

    Google Scholar 

  • Carlsson A., Lindquist, M., Magnusson, T., and Waldeck, B., 1958, On the presence of 3-hydroxytyramine in brain, Science 127: 471.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., 1959, The occurrence, distribution and physiological role of dopamine in the nervous systeM., Pharmacol. Rev. 11: 490–493.

    PubMed  CAS  Google Scholar 

  • Ehringer, H., and Homykiewicz, O., 1960, Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems, Klin. Wschr. 38: 1236–1239.

    Article  PubMed  CAS  Google Scholar 

  • Euler, U. S. von, 1946, A specific sympathomimetic ergone in adrenergic nerve fibers (Sympathin) and its relation to adrenaline and noradrenaline, Acta Physiol. Scand. 12:73–97.

    Article  Google Scholar 

  • Goldstein, D. S., Eisenhofer, G., and Mccarty, R., 1998, Catecholamines: Bridging Basic Science with Clinical Medicine, Adv. Pharmacol. 42: 1–1069.

    Google Scholar 

  • Grima, B., Lamouroux, A., Blanot, F., Biguet, N. F., and Mallet, J., 1985, Complete coding sequence of rat tyrosine hydroxylase mRNA, Proc. Natl. Acad. Sci. USA 82: 617–621.

    Article  PubMed  CAS  Google Scholar 

  • Grima, B., Lamouroux, A., Boni, C., Julien, J. F., Javoy-Agid, F., and Mallet, J., 1987, A single human gene encoding multiple tyrosine hydroxylase with different predicted functional characteristics, Nature 326: 707–711.

    Article  PubMed  CAS  Google Scholar 

  • Holtz, R., 1939, Dopadecarboxylase, Naturwissenschaften, 27: 724–725.

    Article  Google Scholar 

  • Ichikawa, S., Ichinose, H., and Nagatsu, T., 1990, Multiple mRNAs of monkey tyrosine hydroxylase, Biochem. Biophys. Res. Commun. 173: 1331–1336.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa, S., Sasaoka, T., and Nagatsu, T., 1991, Primary structure of mouse tyrosine hydroxylase deduced from its cDNA, Biochem. Biophys. Res. Commun. 176: 1610–1616.

    Article  PubMed  CAS  Google Scholar 

  • Ichinose, H., Sumi-Ichinose, C., Ohye, T., Hagino, Y., Fujita, K., and Nagatsu, T., 1992, Tissue-specific alternative splicing of the first exon generates two types of mRNAs in human aromatic L-amino acid decarboxylase, Biochemistry 31:11546–11550.

    Article  PubMed  CAS  Google Scholar 

  • Ichinose, H., Ohye, T., Fujita, K., Yoshida, M., Ueda, S., and Nagatsu, T., 1993, Increased heterogeneity of tyrosine hydroxylase in humans, Biochem. Biophys. Res. Commun. 195: 158–165.

    Article  PubMed  CAS  Google Scholar 

  • Ichinose, H., Ohye, T., Takahashi, E., Seki, N., Hori, T., Segawa, M., Nomura, Y., Endo, K., Tanaka, H., Tsuji, S., Fujita, K., and Nagatsu, T., 1994a, Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations of the GTP cyclohydrolase I gene, Nature Genet. 8: 236–242.

    Article  CAS  Google Scholar 

  • Ichinose, H., Ohye, T., Fujita, K., Pantucek, K., Lange, K., Riederer, R., and Nagatsu, T. 1994b, Quantification of mRNA of tyrosine hydroxylase and aromatic L-amino acid decarboxylase in the substantia nigra in Parkinson’s disease and schizophrenia, J. Neural Transm. [P-D Sect] 8: 149–158.

    Article  CAS  Google Scholar 

  • Ichinose, H., Ohye, T., Matsuda, Y., Hori, T., Blau, N., Burlina, A., Rouse, B., Matalon, R., Fujita, K., and Nagatsu, T., 1995, Characterization of mouse and human GTP cyclohydrolase I genes: Mutations in patients with GTP cyclohydrolase I deficiencY., J. Biol. Chem. 270: 10062–10071.

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro, H., Yamada, K., Ichino, N., and Nagatsu, T., 1998 Identification and characterization of a novel phorbol ester-responsive DNA sequence in the 5’-flanking region of the human dopamine beta- hydroxylase gene, J. Biol. Chem. 273: 21941–21949.

    Article  PubMed  CAS  Google Scholar 

  • Iwata, N., Kobayashi, K., Sasaoka, T., Hidaka, H., and Nagatsu, T., 1992, Structure of the mouse tyrosine hydroxylase gene, Biochem. Biophys. Res. Commun. 182: 348–354.

    Article  PubMed  CAS  Google Scholar 

  • Kaneda, N., Kobayashi, K., Ichinose, H., Kishi, F., Nakazawa, A., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1987, Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative mRNA splicing produces four kinds of mRNA from a single gene, Biochem. Biophys. Res. Commun. 146: 971–975.

    Article  PubMed  CAS  Google Scholar 

  • Kaneda, N., Ichinose, H., Kobayashi, K., Oka, K., Kishi, F, Nakazawa, A., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1988, Molecular cloning of cDNA and chromosomal assignment of the gene for human phenylethanolamine N-methyltransferase, the enzyme for epinephrine biosynthesis, J. Biol. Chem. 263: 7672–7677.

    PubMed  CAS  Google Scholar 

  • Kaneda, N., Sasaoka, T., Kobayashi, K., Kiuchi, K., Nagatsu, I., Kurosawa, Y., Fujita, K., Yokoyama, M., Nomura, T., Katsuki, M., and Nagatsu, T., 1991, Tissue-specific and high-level expression of the human tyrosine hydroxylase gene in transgenic mice, Neuron 6: 583–594.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S., Hikida T., Watanabe D., Ichinose H., Nagatsu T., Kreitman R. J., Pastan L, and Nakanishi S., 2000, Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function, Science 289: 633–637.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, S., 1963, The structure of the phenylalanine-hydroxylation cofactoR., Proc. Natl. Acad. Sci. USA 50: 1085–1093.

    Article  PubMed  CAS  Google Scholar 

  • Knappskog, P. M., Flatmark, T., Mallet, J., Lüdecke, B., and Bartholomé, K., 1995, Recessively inherited L-DOPA-responsive dystonia caused by a point mutation (Q381k) in the tyrosine hydroxylase gene, Human Mol. Genet. 4: 1209–1212.

    Article  CAS  Google Scholar 

  • Kobayashi, K., Kaneda, N., Ichinose, H., Kishi, F., Nakazawa, A., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1988, Structures of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types, J. Biochem. 103: 907–912.

    PubMed  CAS  Google Scholar 

  • Kobayashi, K., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1989, Human dopamine beta-hydroxylase gene: two mRNA types having different 3’-terminal regions are produced through alternative polyadenylation, Nucleic Acids Res. 17: 1089–1102.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, K., Sasaoka, T., Monta, S., Nagatsu, I., Iguchi, A., Kurosawa, Y., Fujita, K., Nomura, T., Kimura, M., Katsuki, M., and Nagatsu, T., 1992, Genetic alteration of catecholamine specificity in transgenic mice, Proc. Natl. Acad. Sci. USA 89: 1631–1635.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, K., Monta, S., Mizuguchi, T., Sawada, H., Yamada, K., Nagatsu, I., Fujita, K., and Nagatsu, T., 1994, Functional and high-level expression of human dopamine beta-hydroxylase in transgenic mice, J. Biol. Chem. 269: 29725–29731.

    PubMed  CAS  Google Scholar 

  • Kobayashi, K., Monta, S., Sawada, H., Mizuguchi, T., Yamada, K., Nagatsu, I, Hata, T., Watanabe, Y., Fujita, K., and Nagatsu, T., 1995a, Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice, J. Biol. Chem. 270: 27235–27243.

    Article  CAS  Google Scholar 

  • Kobayashi, K., Ota, A., Togari, A., Monta, S., Mizuguchi, T., Sawada, M., Yamada, K., Nagatsu, I., Matsumoto, S., Fujta, K., and Nagatsu, T., 1995b, Alteration of catecholamine phenotype in transgenic mice influences expression of adrenergic receptor subtypes, J. Neurochem. 65: 492–501.

    Article  CAS  Google Scholar 

  • Kobayashi, K., Monta, S., Sawada, H., Mizuguchi, T., Yamada, K., Nagatsu, L, Fujita, K., Kreitman, R. J., Pastan, I., and Nagatsu, T., 1995C., Immunotoxin-mediated conditional disruption of specific neurons in transgenic mice, Proc. Nail. Acad. Sci. USA 92: 1132–1136.

    Article  CAS  Google Scholar 

  • Kobayashi, K., Pastan, I., Nagatsu, T., 1997, Controlled genetic ablation by immunotoxin-mediated cell targeting, in: Transgenic Animals : L. M. Houdebine ed., Harwood Academic Publishers, Amsterdam, pp.331–336.

    Google Scholar 

  • Kobayashi, K., and Nagatsu, T., 2000, Transgenic rescue of tyrosine hydroxylase-deficient mice: application for generating animal models with catecholamine dysfunction, in: Progress in Gene Therapy: Basic and Clinical Frontiers., R. Bertolotti, S. H. Parvez, and T. Nagatsu, eds., VSP, Utrecht, pp. 267–288.

    Google Scholar 

  • Kobayashi K., Noda Y., Matsushita N., Nishii K., Sawada H., Nagatsu T., Nakahara D., Fukabori R., Yasoshima Y., Yamamoto T., Miura M., Kano M., Miyama T., Miyamoto Y., and Nabeshima T., 2000, Modest neuropsychological deficits caused by reduced noradrenaline metabolism in mice heterozygous for a mutated tyrosine hydroxylase gene, J. Neurosci. 20: 2418–2426.

    PubMed  CAS  Google Scholar 

  • Lovenberg, W., Weissbach, H., and Udenfriend, S., 1962, Aromatic L-amino acid decarboxylase, J. Biol. Chem. 237: 89–93.

    PubMed  CAS  Google Scholar 

  • Lüdecke, B., Knappskog, P. M., Clayton, P. T., Surtees, R. A. H., Clelland, J. D., Heales, S. J. R., Brand, M. P., Bartholomé, K., and Flatmark, T., 1996, Recessively inherited L-DOPA-responsive parkinsonism in infancy caused by a point mutation (L205P) in the tyrosine hydroxylase gene, Human Mol. Genet. 5: 1023–1028.

    Article  Google Scholar 

  • Morita, S., Kobayashi, K., Muzuguchi, T., Yamada, K., Nagatsu, I., Titani, K., Fujita, K., Hidaka, H., and Nagatsu, T., 1993, The 5’-flanking region of human dopamine beta-hydroxylase gene promotes the neuron subtype-specific gene expression in the central nervous system of transgenic mice, Mol. Brain Res. 17: 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu, T., Levitt, M., and Udenfriend, S., 1964, Tyrosine hydroxylase-the initial step in norepinephrine biosynthesis, J. Biol. Chem. 239, 2910–2917.

    PubMed  CAS  Google Scholar 

  • Nagatsu, T., and Kojima, K., 1988, Application of electrochemical detection in HPLC to the assay of biologically active compounds, Trends Anal. Chem. 7: 21–27.

    Article  CAS  Google Scholar 

  • Nagatsu, T., 1991, Application of high-performance liquid chromatography to the study of biogenic amine- related enzymes, J. Chromatogr. Biomed. Appl. 566: 287–307.

    Article  CAS  Google Scholar 

  • Nagatsu, T., 1991, Genes for human catecholamine-synthesizing enzymes, Neurosci. Res. 12: 315–345.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu, T., and Ichinose, H., 1991, Comparative studies on the structure of human tyrosine hydroxylase with those of the enzyme of various mammals, Comp. Biochem. Physiol., 98C: 203–210.

    CAS  Google Scholar 

  • Nagatsu, T., 1993, Biochemical aspects of Parkinson’s disease, in: Advances in Neurology, Vol. 60. Parkinson’s Disease: From Basic Research To Treatment, H. Narabayashi, T. Nagatsu, N. Yanagisawa, Y Mizuno, eds., Raven Press, New York, pp. 165–174.

    Google Scholar 

  • Nagatsu, T., 1995, Tyrosine hydroxylase: human isoforms, structure and regulation in physiolosy and pathologY., in: Essays in Biochemistry Vol.30, D. K. Apps, K. F Tipton, eds., Portland Press, London, pp. 15–35.

    Google Scholar 

  • Nagatsu, T., 1997, Isoquinoline neurotoxins in the brain and Parkinson’s disease, Neurosci. Res. 29: 99–111.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T., and Ichinose H., 1999, Regulation of pteridine-requiring enzymes by the cofactor tetrahydrobiopterin, Mol. Neurobiol. 19: 79–96.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T., Mogi M., Ichinose H., and Togari A., 2000, Changes in cytokines and neurotrophins in Parkinson’s disease, J. Neural Transm. [Suppl] 60: 277–290.

    Google Scholar 

  • Narabayashi, H., Kondo, T., Nagatsu, T., Hayashi, A., and Suzuki, T., 1984, DL-Threo-3,4-dihydroxyphenylserine for freezing symptom in parkinsonisM., in: Advances in Neurology, Vol. 40, R. G. Hassler, J. F Christ, eds., Raven Press, New York, pp. 497–502.

    Google Scholar 

  • Nichol, C. A., Smith, G. K., and Duch, D. S., 1985, Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin, Ann. Rev. Biochem. 54: 729–762.

    Article  PubMed  CAS  Google Scholar 

  • Nishii, K., Matsushita, N., Sawada, H., Sano, H., Noda, Y., Mamiya, T., Nabeshima, T., Nagatsu, L, Hata, T., Kiuchi, K., Yoshizato, H., Nakashima, K., Nagatsu, T., and Kobayashi, K., 1998, Motor and learning dysfunction during postnatal development in mice defective in DA neuronal transmission, J. Neurosci. Res., 54: 450–464.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, T., Tazawa, M., Ohtsuki, M., Ichinose, C. S., Hagino, Y., Ota, A., Nakashima, A., Mori, K., Sugimoto, T., Ueno, O., Yazawa, Y., Ichinose, H., and Nagatsu, T., 1998, Enzymes related to catecholamine biosynthesis in tetrahymena pyriformis. Presence of GTP cyclohydroxylase I, Comp. Biochem. Physiol. B 120: 753–760.

    Article  PubMed  CAS  Google Scholar 

  • Ogiwara, S., Nagatsu, T., Teradaira, R., Fujita, K., and Sugimoto, T., 1992, Diastereomers of neopterin and biopterin in human urine, Biol. Chem. Hoppe-Seyler, 373: 1061–1065.

    Article  PubMed  CAS  Google Scholar 

  • O’malley, K. L., Anhalt, M. J., Martin, B. M., Kalsoe, J. R., Winfield, S. L., and Ginns, E. I., 1987, Isolation and characterization of the human tyrosine hydroxylase gene: identification of 5’ alternative splice sites responsible for multiple mRNAs, Biochemistry 26: 6910–6914.

    Article  PubMed  Google Scholar 

  • Robertson, D., and Hale, N., 1998, Genetic disease of hypotension, Adv. Pharmacol. 42: 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Sasaoka, T., Kaneda, N., Kurosawa, Y., Fujita, K., and Nagatsu, T., 1989, Structure of human phenylethanolamine N-methyltransferase gene: existence of two types of mRNA with different transcription initiation sites, Neurochem. Int. 15: 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Sasaoka, T., Kobayashi, K., Nagatsu, I., Takahashi, R., Kimura, M., Yokoyama, M., Nomura, T., Katsuki, M., and Nagatsu, T., 1992, Analysis of the human tyrosine hydroxylase promoter-chloramphenicol acetyltransferase chimeric gene expression in transgenic mice, Mol. Brain Res. 16: 274–286.

    Article  PubMed  CAS  Google Scholar 

  • Sawada, H., Nishii, K., Suzuki T., Hasegawa, K., Hata, T., Nagatsu, I., Kreitman, R. J., Pastan, I., Nagatsu, T., and Kobayashi, K., 1998, Autonomic neuropathy in transgenic mice caused by immunotoxin targeting of the peripheral nervous systeM., J. Neurosci. Res. 51: 162–173.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y., Muramatsu, S., Dceguchi, K., Fujimoto, K., Fan, D. S., Ogawa, M., Mizukami, H., Urabe, M., Kume, A., Nagatsu, I., Urano, F., Suzuki, T., Ichinose, H., Nagatsu, T., Monahan, J., Nakano, I., and Ozawa, K., 2000, Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic- L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease, Human Gene Therapy 11: 1509–1519.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, T., Dcemoto, K., Murata, S., Tazawa, M., Nomura, T., Hagino, Y., Ichinose, H., and Nagatsu, T., 2001, Identification of (6R)-5,6,7,8-tetrahydro-D-monapterin as the native pteridine in Tetrahymena pyriformis, Helv. Chim. Acta 84: 918–927.

    Article  CAS  Google Scholar 

  • Sumi-Ichinose, C., Ichinose, H., Takahashi, E., Hori, T., and Nagatsu, T., 1992, Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L-amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis, Biochemistry 31: 2229–2238.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S. A., Matsumoto, A. M., and Palmiter, R. D., 1995, Noradrenaline is essential for mouse fetal developmenT., Nature 374: 643–646.

    Article  PubMed  CAS  Google Scholar 

  • Thöny, B., Auerbach, G., and Blau, N., 2000, Tetrahydrobiopterin biosynthesis, regeneration and functions, Biochem. J. 347: 1–16.

    Article  PubMed  Google Scholar 

  • Togari, A., Ichinose, H., Matsumoto, S., Fujita, K., and Nagatsu, T., 1992, Multiple mRNA forms of human GTP cyclohydrolase I, Biochem. Biophys. Res. Commun. 187: 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Udenfriend, S., and Cooper, J. R., 1952, The enzymatic conversion of phenylalanine to tyrosine, J. Biol. Chem. 194:503–511.

    PubMed  CAS  Google Scholar 

  • Udenfriend, S., Cooper, J. R., Clark, C. T., and Baer, J. E., 1953, Rate of turnover of epinephrine in the adrenal medulla, Science 117: 663–665.

    Article  PubMed  CAS  Google Scholar 

  • Udenfriend, S., and Wyngaarden, J. B., 1956, Precursors of adrenal epinephrine and norepinephrine in vivo, Biochim. Biophys. Acta 20: 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Udenfriend, S., 1962, Fluorescence Assay in Biology and Medicine Vol. 1, Academic Press, New York.

    Google Scholar 

  • Udenfriend, S., 1969, Fluorescence Assay in Biology and Medicine, Vol. 2, Academic Press, New York.

    Google Scholar 

  • Watanabe, D., Inokawa, H., Hashimoto, K., Suzuki, N., Kano, M., Shigemoto, R., Hirano, T., Toyama, K., Kaneko, S., Yokoi, M., Moriyoshi, K., Suzuki, M., Kobayashi, K., Nagatsu, T., Kreitman, R. J., Pastan, I., and Nakanishi, S., 1998, Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination, Cell 95: 17–27.

    Article  PubMed  CAS  Google Scholar 

  • Wallas, S. I., and Greengard, P., 1984, DARPP-32, a dopamine and adenosine 3′: 5″-monophosphate regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J. Neurosci. 4: 84–88.

    Google Scholar 

  • Wolfe, D. E., Potter, L. T., Richardson, K. C., and Axelrod, J., 1962, Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiographY., Science 138: 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Q. Y., Quaife, C. J., and Palmiter, R. D., 1995, Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development., Nature 374: 640–643.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nagatsu, T. (2002). Molecular Genetics of Catecholamines: Key Molecules Bridging Basic Science with Clinical Science. In: Nagatsu, T., Nabeshima, T., McCarty, R., Goldstein, D.S. (eds) Catecholamine Research. Advances in Behavioral Biology, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3538-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3538-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3388-1

  • Online ISBN: 978-1-4757-3538-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics