Advertisement

Familial Orthostatic Tachycardia due to Norepinephrine Transporter (SLC6A2) Deficiency

  • Maureen K. Hahn
  • Michelle Mazei
  • Nancy Flattem
  • John R. Shannon
  • Randy D. Blakely
  • David Robertson
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)

Abstract

The availability of extracellular NE is limited by a presynaptically localized NE transporter, NET. NET retrieves released NE, thus limiting the spread and duration of synaptic excitability and allowing neurotransmitter to be repackaged into synaptic vesicles. NET is a target for both antidepressants, such as the tricyclic agents and for the psychostimulants, amphetamine and cocaine.2 NET is a member of a gene family of 12 transmembrane domain (TMD)-containing, Na+- and Cl--coupled cotransporters which also includes dopamine, serotonin, GABA, glycine, proline and taurine transporters. hNET is a single copy gene localized to chromosome 16 at 16ql2.2 (SLC6A2).5, 10 The hNET gene was cloned from a human lung fibroblast library and the intron-exon borders were determined, reporting a gene of ~45 kb with 16 exons and 15 introns.17,23,27 The hNET gene codes for a 617 amino acid protein with a predicted molecular weight of 69, 000 Da.26

Keywords

Orthostatic Intolerance Norepinephrine Transporter Taurine Transporter Bioi Psychiatry Hyperadrenergic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Amara and M. J. Kuhar. Neurotransmitter transporters: recent progress. Annu Rev Neurosci 16 (1993) 73–93.PubMedCrossRefGoogle Scholar
  2. 2.
    E. L. Barker and R. D. Blakely. Norepinephrine and serotonin transporters: molecular targets of antidepressant drugs. In F. E. Bloom and D. J. Kupfer (Eds.), Psychopharmacology: the fourth generation of progress, Raven Press, Ltd., New York, 1995.Google Scholar
  3. 3.
    J. Biederman and T. Spencer. Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry 46 (1999) 1234–1242.PubMedCrossRefGoogle Scholar
  4. 4.
    M. Bohm, K. La Rosee, R. H. Schwinger and E. Erdmann. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J Am Coll Cardiol 25 (1995) 146–153.PubMedCrossRefGoogle Scholar
  5. 5.
    M. Brüss, J. Kunz, B. Lingen and H. Bönisch. Chromosomal mapping of the human gene for the tricyclic antidepressant-sensitive noradrenaline transporter. Hum Genet 91 (1993) 278–280.PubMedCrossRefGoogle Scholar
  6. 6.
    G. Eisenhofer, H. S. Cox and M. D. Esler. Parallel increases in noradrenaline reuptake and release into plasma during activation of the sympathetic nervous system in rabbits. Naunyn Schmiedebergs Arch Pharmacol 342 (1990) 328–335.PubMedCrossRefGoogle Scholar
  7. 7.
    G. Eisenhofer, M. D. Esler, I. T. Meredith, A. Dart, R. O. D. Cannon, A. A. Quyyumi, G. Lambert, J. Chin, G. L. Jennings and D. S. Goldstein. Sympathetic nervous function in human heart as assessed by cardiac spillovers of dihydroxyphenylglycol and norepinephrine. Circulation 85 (1992) 1775–1785.PubMedCrossRefGoogle Scholar
  8. 8.
    M. Esler, G. Jackman, A. Bobik, P. Leonard, D. Kelleher, H. Skews, G. Jennings and P. Körner. Norepinephrine kinetics in essential hypertension. Defective neuronal uptake of norepinephrine in some patients. Hypertension 3 (1981) 149–156.PubMedCrossRefGoogle Scholar
  9. 9.
    J. Gelernter, S. Kruger, K. K. Kidd and S. Amara. Taql RFLP at norepinephrine transporter protein (NET) locus. Hum Mol Genet 2 (1993) 820.PubMedCrossRefGoogle Scholar
  10. 10.
    J. Gelernter, S. Kruger, A. J. Pakstis, T. Pacholczyk, R. S. Sparkes, K. K. Kidd and S. Amara. Assignment of the norepinephrine transporter protein (NET1) locus to chromosome 16. Genomics 18 (1993) 690–692.PubMedCrossRefGoogle Scholar
  11. 11.
    D. S. Goldstein, J. E. Brush, Jr., G. Eisenhofer, R. Stull and M. Esler. In vivo measurement of neuronal uptake of norepinephrine in the human heart. Circulation 78 (1988) 41–48.PubMedCrossRefGoogle Scholar
  12. 12.
    M. K. Hahn, M. S. Mazei, D. Robertson and R. D. Blakely. Role of human norepinephrine transporter gene single nucleotide polymorphisms in cardiovascular disease. Am J Med Genet 67 (2000) 369.Google Scholar
  13. 13.
    M. K. Hahn, M. S. Mazei, D. Robertson and R. D. Blakely. Single nucleotide polymorphisms in the human norepinephrine transporter gene alter in vitro norepinephrine transport. Society for Neuroscience Abstracts 26(2000)25.Google Scholar
  14. 14.
    M. K. Halushka, J. B. Fan, K. Bentley, L. Hsie, N. Shen, A. Weder, R. Cooper, R. Lipshutz and A. Chakravarti. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 22 (1999) 239–247.PubMedCrossRefGoogle Scholar
  15. 15.
    M. Imamura, H. M. Lander and R. Levi. Activation of histamine H3-receptors inhibits carrier-mediated norepinephrine release during protracted myocardial ischemia. Comparison with adenosine A1-receptors and alpha2-adrenoceptors. Circ Res 78 (1996) 475–481.PubMedCrossRefGoogle Scholar
  16. 16.
    G. Jacob, J. R. Shannon, F. Costa, R. Furlan, I. Biaggioni, R. Mosqueda-Garcia, R. M. Robertson and D. Robertson. Abnormal norepinephrine clearance and adrenergic receptor sensitivity in idiopathic orthostatic intolerance. Circulation 99 (1999) 1706–1712.PubMedCrossRefGoogle Scholar
  17. 17.
    C. H. Kim, H. S. Kim, J. F. Cubells and K. S. Kim. A previously undescribed intron and extensive 5 upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. Journal of Biological Chemistry 274 (1999)6507–18.PubMedCrossRefGoogle Scholar
  18. 18.
    V. Klimek, C. Stockmeier, J. Overholser, H. Y. Meltzer, S. Kalka, G. Dilley and G. A. Ordway. Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. J Neurosci 17 (1997) 8451–8458.PubMedGoogle Scholar
  19. 19.
    T. Kurz, G. Richardt, S. Hagl, M. Seyfarth and A. Schomig. Two different mechanisms of noradrenaline release during normoxia and simulated ischemia in human cardiac tissue. J Mol Cell Cardiol 27 (1995) 1161–1172.PubMedCrossRefGoogle Scholar
  20. 20.
    B. E. Leonard. The role of noradrenaline in depression: a review. J Psychopharmacol 11 (1997) S39–S47.Google Scholar
  21. 21.
    C. S. Liang, T. H. Fan, J. T. Sullebarger and S. Sakamoto. Decreased adrenergic neuronal uptake activity in experimental right heart failure. A chamber-specific contributor to beta-adrenoceptor downregulation. J Clin Invest 84 (1989) 1267–1275.PubMedCrossRefGoogle Scholar
  22. 22.
    P. Merlet, J. L. Dubois-Rande, S. Adnot, M. H. Bourguignon, C. Benvenuti, D. Loisance, H. Valette, A. Castaigne and A. Syrota. Myocardial beta-adrenergic desensitization and neuronal norepinephrine uptake function in idiopathic dilated cardiomyopathy. J Cardiovasc Pharmacol 19 (1992) 10–16.PubMedCrossRefGoogle Scholar
  23. 23.
    J. Meyer, P. Wiedemann, O. Okladnova, M. Bruss, T. Staab, G. Stober, P. Riederer, H. Bonisch and K. P. Lesch. Cloning and functional characterization of the human norepinephrine transporter gene promoter. J Neural Transm 105 (1998) 1341–1350.PubMedCrossRefGoogle Scholar
  24. 24.
    A. M. Novi. An electron microscopic study of the innervation of papillary muscles in the rat. Anat Rec 160 (1968) 123–141.PubMedCrossRefGoogle Scholar
  25. 25.
    D. Owen, L. Du, D. Bakish, Y. D. Lapierre and P. D. Hrdina. Norepinephrine transporter gene polymorphism is not associated with susceptibility to major depression. Psychiatry Res 87 (1999) 1–5.PubMedCrossRefGoogle Scholar
  26. 26.
    T. Pacholczyk, R. D. Blakely and S. G. Amara. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350 (1991) 350–354.PubMedCrossRefGoogle Scholar
  27. 27.
    P. Pörzgen, H. Bönisch and M. Brüss. Molecular cloning and organization of the coding region of the human norepinephrine transporter gene [published erratum appears in Biochem Biophys Res Commun 1996 Oct 14;227(2):642–3]. Biochem Biophys Res Commun 215 (1995) 1145–1150.PubMedCrossRefGoogle Scholar
  28. 28.
    P. Pörzgen, H. Bönisch, R. Hammermann and M. Brüss. The human noradrenaline transporter gene contains multiple polyadenylation sites and two alternatively spliced C-terminal exons. Biochim Biophys Acta 1398(1998)365–370.PubMedCrossRefGoogle Scholar
  29. 29.
    K. J. Ressler and C. B. Nemeroff. Role of norepinephrine in the pathophysiology and treatment of mood disorders. Biol Psychiatry 46 (1999) 1219–1233.PubMedCrossRefGoogle Scholar
  30. 30.
    D. Robertson. The epidemic of orthostatic tachycardia and orthostatic intolerance. Am J Med Sci 317 (1999) 75–77.PubMedCrossRefGoogle Scholar
  31. 31.
    F. Runkel, M. Bruss, M. M. Nothen, G. Stober, P. Propping and H. Bonisch. Pharmacological properties of naturally occurring variants of the human norepinephrine transporter [In Process Citation]. Pharmacogenetics 10 (2000) 397–405.PubMedCrossRefGoogle Scholar
  32. 32.
    M. Schafers, D. Dutka, C. G. Rhodes, A. A. Lammertsma, F. Hermansen, O. Schober and P. G. Camici. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 82 (1998) 57–62.PubMedCrossRefGoogle Scholar
  33. 33.
    J. J. Schildkraut. The catecholamine hypothesis of affective disorders: a review of supporting evidence. American Journal of Psychiatry 122 (1965) 509–522.PubMedGoogle Scholar
  34. 34.
    J. R. Shannon, N. L. Flattern, J. Jordan, G. Jacob, B. K. Black, I. Biaggioni, R. D. Blakely and D. Robertson. Clues to the origin of orthostatic intolerance: a genetic defect in the cocaine- and antidepressant sensitive norepinephrine transporter. New England Journal of Medicine 342 (2000) 541–549.PubMedCrossRefGoogle Scholar
  35. 35.
    G. Stöber, J. Hebebrand, S. Cichon, M. Bruss, H. Bonisch, G. Lehmkuhl, F. Poustka, M. Schmidt, H. Remschmidt, P. Propping and M. M. Nothen. Tourette syndrome and the norepinephrine transporter gene: results of a systematic mutation screening. Am J Med Genet 88 (1999) 158–163.PubMedCrossRefGoogle Scholar
  36. 36.
    G. Stöber, M. M. Nothen, P. Pörzgen, M. Bruss, H. Bonisch, M. Knapp, H. Beckmann and P. Propping. Systematic search for variation in the human norepinephrine transporter gene: identification of five naturally occurring missense mutations and study of association with major psychiatric disorders. Am J Med Genet 67 (1996) 523–532.PubMedCrossRefGoogle Scholar
  37. 37.
    G. E. Torres, W. Yao, A. R. Mohn, H. Quan, K. Kim, A. I. Levey, J. Staudinger and M. G. Caron. Functional Interaction between Monoamine Plasma Membrane Transporters and the Synaptic PDZ Domain-Containing Protein PICK1. Neuron 30 (2001) 121–134.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Maureen K. Hahn
    • 1
  • Michelle Mazei
    • 2
  • Nancy Flattem
    • 2
  • John R. Shannon
    • 3
  • Randy D. Blakely
    • 1
  • David Robertson
    • 3
  1. 1.Center for Molecular Neuroscience, Department of PharmacologyVanderbilt UniversityNashvilleUSA
  2. 2.Department of PharmacologyVanderbilt UniversityNashvilleUSA
  3. 3.Autonomic Dysfunction CenterVanderbilt UniversityNashvilleUSA

Personalised recommendations