Advertisement

Dopaminergic Hyperactivity in Striatum in Schizophrenia: A Failure of Cortical Glutamatergic Control?

  • Lawrence S. Kegeles
  • Marc Laruelle
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)

Abstract

The classical dopamine hypothesis of schizophrenia proposes that positive symptoms of the disorder are a result of hyperactivity of dopamine transmission.1 This hypothesis has received new support from brain imaging studies that have shown an exaggerated response to acute amphetamine challenge in untreated patients with schizophrenia compared with healthy subjects using dopamine D2 receptor SPECT (single photon emission computed tomography) or PET (positron emission tomography).2–4

Keywords

Positron Emission Tomography Dopamine Release Positron Emission Tomography Study Dopamine Transmission NMDA Receptor Blockade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Carlsson and M. Lindqvist, Effect of chlorpromazine or Haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain, Acta Pharmacol. Toxicol. 20, 140–144 (1963).CrossRefGoogle Scholar
  2. 2.
    M. Lamelle, A. Abi-Dargham, C. H. van Dyck, R. Gil, C. D. De Souza, J. Erdos, E. McCance, W. Rosenblatt, C. Fingado, S. S. Zoghbi, R. M. Baldwin, J. P. Seibyl, J. H. Krystal, D. S. Charney, and R. B. Innis, Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug free schizophrenic subjects, Proc. Natl. Acad. Sci. 93, 9235–9240 (1996).CrossRefGoogle Scholar
  3. 3.
    A. Breier, T. P. Su, R. Saunders, R. E. Carson, B. S. Kolachana, A. deBartolomeis, D. R. Weinberger, N. Weisenfeld, A. K. Malhotra, W. C. Eckelman, and D. Pickar, Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method, Proc. Natl. Acad. Sci. 94, 2569–2574 (1997).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Abi-Dargham, R. Gil, J. Krystal, R. Baldwin, J. Seibyl, M. Bowers, C. van Dyck, D. Charney, R. Innis, and M. Lamelle, Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort, Am. J. Psychiatry 155, 761–767 (1998).PubMedGoogle Scholar
  5. 5.
    D. C. Javitt and S. R. Zukin, Recent advances in the phencyclidine model of schizophrenia, American Journal of Psychiatry 148, 1301–1308 (1991).PubMedGoogle Scholar
  6. 6.
    A. A. Grace, Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia., Neuroscience 41, 1–24 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    J. W. Olney and N. B. Farber, Glutamate receptor dysfunction and schizophrenia, Arch. Gen. Psychiatry 52, 998–1007 (1995).PubMedCrossRefGoogle Scholar
  8. 8.
    G. Battaglia, J. A. Monn, and D. D. Schoepp, In vivo inhibition of veratridine-evoked release of striatal excitatory amino acids by the group II metabotropic glutamate receptor agonist LY354740 in rats, Neurosci Lett 229, 161–164. (1997).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Kegeles, D. Martinez, L. Kochan, N. Simpson, D. R. Hwang, O. Mawlawi, T. Cooper, R. Van Heertum, and M. Lamelle, Ketamine-induced dopamine release measured with [11C]raclopride PET in humans, Soc Neurose Abst 26, 1839 (2000).Google Scholar
  10. 10.
    A. Breier, C. M. Adler, N. Weisenfeld, T. P. Su, I. Elman, L. Picken, A. K. Malhotra, and D. Piekar, Effects of NMD A antagonism on striatal dopamine release in healthy subjects: application of a novel PET approach, Synapse 29, 142–147 (1998).PubMedCrossRefGoogle Scholar
  11. 11.
    G. S. Smith, R. Schloesser, J. D. Brodie, S. L. Dewey, J. Logan, S. A. Vitkun, P. Simkowitz, A. Hurley, T. Cooper, N. D. Volkow, and R. Cancro, Glutamate modulation of dopamine measured in vivo with positron emission tomography (PET) and 11C-raclopride in normal human subjects, Neuropsychopharmacology 18, 18–25 (1998).PubMedCrossRefGoogle Scholar
  12. 12.
    F. X. Vollenweider, P. Vontobel, I. Oye, D. Hell, and K. L. Leenders, Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a model psychosis in humans, J Psychiatr Res 34, 35–43 (2000).PubMedCrossRefGoogle Scholar
  13. 13.
    D. W. Miller and E. D. Abercrombie, Effects of MK-801 on spontaneous and amphetamine-stimulated dopamine release in striatum measured with in vivo microdialysis in awake rats, Brain Research Bulletin 40, 57–62 (1996).PubMedCrossRefGoogle Scholar
  14. 14.
    B. W. Adams, S. R. Rubino, C. W. Bradberry, and B. Moghaddam, Effects of phencyclidine, ketamine, and amphetamine on striatal extracellular dopamine levels of awake primate, Soc Neurosci Abst 26, 728 (2000).Google Scholar
  15. 15.
    L. S. Kegeles, A. Abi-Dargham, Y. Zea-Ponce, J. Rodenhiser-Hill, J. J. Mann, R. L. Van Heertum, T. B. Cooper, A. Carlsson, and M. Lamelle, Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia, Biol Psychiatry 48, 627–640 (2000).PubMedCrossRefGoogle Scholar
  16. 16.
    L. S. Kegeles, Y. Zea-Ponce, A. Abi-Dargham, J. Rodenhiser, T. Wang, R. Weiss, R. L. Van Heertum, J. J. Mann, and M. Lamelle, Stability of [123I]IBZM SPECT measurement of amphetamine-induced striatal dopamine release in humans, Synapse 31, 302–308 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    B. N. Van Berckel, R. N. Waterhouse, D. Hwang, O. Mawlawi, Y. Huang, L. S. Kegeles, R. L. Van Heertum, and M. Lamelle, The group II metabotropic glutamate receptor agonist LY354740 increases the amphetamine induced striatal [11C]raclopride displacement in baboons, J Nucl Med 42, 142P (2001).Google Scholar
  18. 18.
    B. Moghaddam, B. Adams, A. Verma, and D. Daly, Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex, J Neurosci 17, 2921–2927 (1997).PubMedGoogle Scholar
  19. 19.
    A. Carlsson, N. Waters, and M. L. Carlsson, Neurotransmitter interactions in schizophrenia-therapeutic implications, Biol Psychiatry 46, 1388–1395 (1999).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Lawrence S. Kegeles
  • Marc Laruelle
    • 1
  1. 1.Departments of Psychiatry and RadiologyColumbia UniversityNew YorkUSA

Personalised recommendations