Skip to main content

Nano and Micro Channel Flows of Biomolecular Suspension

  • Chapter
Microfluidics and BioMEMS Applications

Part of the book series: Microsystems ((MICT,volume 10))

  • 610 Accesses

Abstract

In this chapter, we described the two particle methods for simulating flow problems: molecular dynamics (MD) and dissipative particle dynamics (DPD). MD simulates the motion of individual molecules or atoms in a system and provides information on phenomena occurring in atomic scales. DPD is a mesoscaled method dealing with the motion of fluid particles and is feasible to cope with the complex system involving inherently disparate length and time scales, such as polymer suspensions and colloids. The principles, their governing equations and their numerical implementations of these two methods were outlined in this chapter. The molecular models used in polymer rheology were introduced to model biomacromolecules. Some of the simulated results were presented on the flow of a simple liquid through nano periodic nozzles, using MD simulation, and on the flow of a biomacromolecular suspension flow a micro channel, using DPD simulation. Finally, some remarks and findings based on MD and DPD simulations were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Gad-el-Hak, “The fluid mechanics of microdevices — The Freeman scholar lecture,” J. Fluid Eng., Vol. 121, 5 (1999).

    Article  Google Scholar 

  2. G.A. Bird, “Monte Carlo simulations of gas flows,” Ann. Rev. Fluid Mech., Vol. 10, 11 (1978).

    Article  Google Scholar 

  3. Qu Weilin, Gh Mohiuddin Mala and Li Dongqing, “Pressure-driven water in trapezoidal silicon,” hit. J. Heat Mass Trans, Vol. 43, 353 (2000).

    Article  MATH  Google Scholar 

  4. J. Harley, H. Bau, “Fluid flow in micro and submicron size channels,” IEEE Trans,. THO249–3, 25 (1989).

    Google Scholar 

  5. J. N. Pfahler. “Liquid Transport in Micro and Submicro Channels,” Ph. D. thesis, Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania (1992).

    Google Scholar 

  6. D. V. McAllister, M. G. Allen and M. R. Prausnitz, “Microfabricated microneedles for gene and drug delivery,” Annu. Rev. Biomed. Eng., Vol. 2, 289 (2000).

    Article  Google Scholar 

  7. K. Chun, G. Hashiguchi, H. Toshiyoshi, H. Fujita, “Fabrication of array of hollow microcapillaries used for injection of genetic materials into animal/plant cells,” Jpn. J. Appl. Phys. Part 2, Vol. 38, 279 (1999).

    Google Scholar 

  8. J. Chen, K. D. Wise, “A multichannel neural probe for selective chemical delivery at the cellular level,” IEEE Trans. Biomed. Eng. Vol. 44, 760 (1997).

    Article  Google Scholar 

  9. L. Lin, A. P. Pisano, “Silicon processed microneedles,” IEEE J Micromech. Syst., Vol. 8, 78 (1999).

    Article  Google Scholar 

  10. J. D. Brazzle, S. Mohanty, A. B. Frazier, “Hollow metallicmicromachined needles with multiple output ports,” Proc. SPIE Conf. Microfluidic Dev. Syst., Santa Clara, Vol. 3877, 257 (1999).

    Google Scholar 

  11. D. V. McAllister, F. Cros, S. P. David, L. M. Matta, M. R. Prausnitz, M. G. Allen, “Three-dimensional hollow microneedle and microtube arrays,” Transducers 99, Int. Conf. Solid-State Sens. Actuators, 10th, Sendia, pp. 1098–1101. Tokyo: IEEE (1999).

    Google Scholar 

  12. T. T. Perkins, D. E. Smith and S. Chu, “Single polymer dynamics in an elongational flow,” Science, Vol. 276, 2016 (1997).

    Article  Google Scholar 

  13. D. E. Smith and S. Chu, “Response of flexible polymers to sudden elongation flow,” Science, Vol. 281, 1335 (1998).

    Article  Google Scholar 

  14. D. E. Smith, H. P. Babcock and S. Chu, “Single-polymer dynamics in steady shear flow,” Science, Vol. 283, 1724 (1999).

    Article  Google Scholar 

  15. P. J. Shrewsbury, S. J. Muller, D. Liepmann, “Effect of flow on complex biological macromolecules in microfluidic devices,” Biomed. Microdevices, Vol. 3, 225 (2001).

    Article  Google Scholar 

  16. P. S. Doyle, E. S. G. Shaqfeh, A. P. Gast, “Dynamics simulation of freely-draining, flexible polymers in steady linear flows,” J. Fluid Mech., Vol. 334, 251 (1997).

    Article  MATH  Google Scholar 

  17. P. S. Doyle, E. S. G. Shaqfeh, “Dynamics simulation of freely-draining, flexible bead-rod chains: start-up of extensional flow,” J. Non-Newtonian Fluid Mech., Vol. 76, 43 (1998).

    Article  MATH  Google Scholar 

  18. P. S. Doyle, E. S. G. Shaqfeh, G. H. McKinley, S. H. Spiegelberg, “Relaxation of dilute polymer-solutions following extensional flow,” J. Non-Newtonian Fluid Mech., Vol. 76, 79 (1998).

    Article  MATH  Google Scholar 

  19. J. S. Hur, S. G. Shaqfeh, R. G. Larson, “Brownian dynamics simulation of single DNA molecules in shear flow,” J. Rheol., Vol. 44, 713 (2000).

    Google Scholar 

  20. D. J. Evans and G. P. Morriss, Statistical Mechanics of Non-Equilibrium Liquids ( Academic Press, New York, 1990 ).

    Google Scholar 

  21. J. Koplik and J. R. Banavar, “Continuum deduction from molecular hydrodynamics,” Ann. Rev. Fluid Mech., Vol. 27, 267 (1995).

    Article  Google Scholar 

  22. J. P. McDonald, Theory of Simple Liquids, 2`d ed. ( Academic, New York, 1986 ).

    Google Scholar 

  23. J. D. Weeks, D. Chandler and H.C. Andersen, J. Chem. Phys., Vol. 54, 5237 (1971).

    Article  Google Scholar 

  24. U. Heinbuch and J. Fischer, “Liquid flow in pores: slip, no-slip, or multilayer sticking,” Phys. Rev. A, Vol. 40, 1144 (1989).

    Article  Google Scholar 

  25. J. H. Irving and J. G. Kirkwood, “The statistical mechanics of transport processes IV. The equation of hydrodynamics,” J. Chem. Phys., Vol. 18, 817 (1950).

    Article  MathSciNet  Google Scholar 

  26. G. K. Batchelor, “The stress system in a suspension of force-free particles,” J. Fluid Mech., Vol. 44, 545 (1972).

    MathSciNet  Google Scholar 

  27. R. R. Huilgol and N. Phan-Thien, Fluid Mechanics of Viscoelasticity: General Principles, Constitutive Modelling, Analytical and Numerical Techniques ( Elsevier, Amsterdam, 1997 ).

    Google Scholar 

  28. B. D. Todd, D. J. Evans and P. J. Davis, “Pressure tensor for inhomogeneous fluids,” Phys. Rev. E, Vol. 52, 1627 (1995).

    Article  Google Scholar 

  29. D. C. Rapaport, The Art of Molecular Dynamics Simulation ( Cambridge University Press, Cambridge, 1995 ).

    Google Scholar 

  30. P. A. Thompson and M. O. Robbins, “Shear flow near solids: epitaxial order and flow boundary conditions,” Phys. Rev. A, Vol. 41, 6830 (1990).

    Article  Google Scholar 

  31. J. Koplik and J. Banavar, “Corner flow in the sliding plate problem,” Phys. Fluids, Vol. 7, 3118 (1995).

    Article  MATH  Google Scholar 

  32. J. Koplik and J. Banavar, “Reentrant corner flows of Newtonian and non-Newtonian fluids,” J. Rheol., Vol. 41, 787 (1997).

    Article  Google Scholar 

  33. A. Jabbarzadeh, J. D. Atkinson and R. I. Tanner, “Rheological properties of thin liquid films by molecular dynamics simulations,” J. Non-Newt. Fluid. Mech., Vol. 69, 169 (1997).

    Article  Google Scholar 

  34. A. Jabbarzadeh, J. D. Atkinson and R. I. Tanner, “Nanorheology of molecularly thin films of n-hexadecane in Couette shear flow by molecular dynamics simulations,” J. Non-Newt. Fluid. Mech., Vol. 77, 53 (1998).

    Article  MATH  Google Scholar 

  35. A. Jabbarzadeh, J. D. Atkinson and R. I. Tanner, “Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of Couette shear flow between two sinusoidal walls,” Phys. Review E, Vol. 61, 690 (2000).

    Article  Google Scholar 

  36. A. Jabbarzadeh, J. D. Atkinson and R. I. Tanner, “Lubrication processes near wall asperities: a molecular dynamics study,” in: Tribology Research: From Model Experiment to Industrial problem, G. Dalmaz et al Ed., 779–785 (Elsevier Science, 2001 ).

    Google Scholar 

  37. Y. Z. Hu, H. Wang, Y. Guo and L. Q. Zheng, “Simulation of lubricant rheology in thin lubrication, Part 1: simulation of Poiseuille flow,” Wear, Vol. 196, 243 (1996).

    Article  Google Scholar 

  38. Y. Z. Hu, H. Wang, Y. Guo, Z. J. Shen and L. Q. Zheng, “Simulation of lubricant rheology in thin lubrication, Part 2: simulation of Couette flow,” Wear, Vol. 196, 249 (1996).

    Article  Google Scholar 

  39. K. P. Travis, B. D. Todd and D. J. Evans, “Departure from Navier-Stokes hydrodynamics in confined liquids,” Phys. Rev. E, Vol. 55, 4288 (1997).

    Article  Google Scholar 

  40. K. P. Travis and K. E. Gubbins, “Poiseuille flow of Lennard-Jones fluid in narrow slit pores,” J. Chem. Phys., Vol. 112, 1984 (2000).

    Article  Google Scholar 

  41. P. J. Daivis, K. P. Travis and B. D. Todd, “A technique for the calculation of mass, energy, and momentum densities at planes in molecular dynamics simulations,” J. Chem. Phys, Vol. 104, 9651 (1996).

    Article  Google Scholar 

  42. X. J. Fan, N. Phan-Thien, Ng Teng Yong, Xu Diao, “Molecular dynamics simulation of a liquid in a nano channels,” Phys. Fluids, Vol. 14, 1146 (2002).

    Article  Google Scholar 

  43. P. J. Hoogerbrugge and J. M. V. A. Koelman, “Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics,” Europhys. Lett., Vol. 19, 155 (1992).

    Article  Google Scholar 

  44. P. Espa íi of and P. Warren, “Statistical mechanics of dissipative particle dynamics,” Europhys. Lett., Vol. 30, 191 (1995).

    Article  Google Scholar 

  45. C. Marsh, “Theoretical Aspect of Dissipative Particle Dynamics,” Ph. D. Thesis, University of Oxford (1998).

    Google Scholar 

  46. R. B. Bird, C. F. Curtiss, R. C. Armstrong, O. Hasssager, Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory (John Wiley & Sons, 1987 ).

    Google Scholar 

  47. Y. Kong, C. W. Manke, W. G. Madden, A. G. Schlijper, “Simulation of a confined polymer in solution using the dissipative particle dynamics method,” Int. J. Thermophys. Vol. 15, 1093 (1994).

    Article  Google Scholar 

  48. Y. Kong, C. W. Manke, W. G. Madden, A. G. Schlijper, “Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics,” J. Chem. Phys., Vol. 107, 592 (1997).

    Article  Google Scholar 

  49. A. G. Schlijper, P. J. Hoogerbrugge, C. W. Manke, “Computer Simulation of dilute polymer solution with the dissipative particle dynamics method,” J. Rheol., Vol. 39, 567 (1995).

    Article  Google Scholar 

  50. A. G. Sclijper, C. W. Manke, W. G. Madden, Y. Kong, “Computer simulation of non-Newtonian fluid rheology,” Int. J. Mod. Phys. C, Vol. 8, 919 (1997).

    Article  Google Scholar 

  51. E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, “Computer simulation for rheological phenomena in dense colloidal suspensions with dissipative particle dynamics,” J. Phys. Cond. Matt., Vol. 8, 9509 (1996).

    Article  Google Scholar 

  52. E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, P. van der Schoot, “Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics,” Phys. Rev. E, Vol. 55, 3124 (1997).

    Article  Google Scholar 

  53. J. M. V. A. Koelman, P. J. Hoogerbrugge, “Dynamic simulation of hard sphere suspensions under steady shear,” Europhys. Lett., Vol. 21, 363 (1993).

    Article  Google Scholar 

  54. P. V. Coveney, P. Espanol, “Dissipative particle dynamics for interacting multi-component systems,” J. Phys. A. Maths and General, Vol. 30, 779 (1997).

    Article  MATH  Google Scholar 

  55. P. V. Coveney, K. E. Novik, “Computer simulations of domain growth and phase separation in 2d binary fluids using dissipative particle dynamics,” Phys. Rev. E, Vol. 54, 5134 (1996).

    Article  Google Scholar 

  56. L. E. Novik, P. V. Coveney, “Using dissipative particle dynamics to model binary immiscible fluids,” Int. J. Mod. Phys. C, Vol. 8, 909 (1997).

    Article  Google Scholar 

  57. M. P. Allen, D. J. Tildesley, Computer simulation of liquids ( Clarenden Press, Oxford, 1987 ).

    MATH  Google Scholar 

  58. R. J. Sadus, Molecular simulation of fluids, theory, algorithms and object-orientation ( Elsvier, Amsterdam, 1999 ).

    Google Scholar 

  59. J. M. Haile, Molecular dynamics simulation, elementary methods (John Wiley & Sons, 1992 ).

    Google Scholar 

  60. U. Frisch, B. Hasslachcher, Y. Pomeau, “Lattice-gas automata for the Navier-Stokes equations,” Phys. Rev. Lett., Vol. 56, 1505 (1986).

    Article  Google Scholar 

  61. M. J. Field, A practical introduction to simulation of molecular system ( Cambridge University Press, New York, 1999 ).

    Google Scholar 

  62. R. D. Groot, P. B. Warren, “Dissipative particle dynamics: bridging the gap between atomic and mesoscopic simulation,” J. Chem. Phys., Vol. 107, 4423 (1997).

    Article  Google Scholar 

  63. S. M. Willemsen, H. C. J. Hoefsloot, P. D. Iedema, “No-slip boundary condition in dissipative particle dynamics,” Int. J. Mod. Phys. C, Vol. 11, 881 (2000).

    Google Scholar 

  64. M. Revenga, I. Zu’ n iga, P. Esoa ii ol, “Boundary models in DPD,” Int. J. Mod. Phys. C, Vol. 9, 1319 (1998).

    Article  Google Scholar 

  65. M. Revenga, I. Zu’ n iga, P. Esoa n ol, “Boundary condition in dissipative particle dynamics,” Computer Phys. Commun., Vol. 121–122, 309 (1999).

    Google Scholar 

  66. L. E. Wedgewood, D. N. Ostrov and R. B. Bird, “A finitely extensible bead-spring model for dilute polymer solution,” J. Non-Newtonian Fluid Mech., Vol. 40, 119 (1991).

    Article  MATH  Google Scholar 

  67. X. J. Fan, N. Phan-Thien, Ng Teng Yong, Xuhong Wu and Diao Xu, “A Simulation of Bio-macromolecular Suspension Flow through Microchannels,” submitted to Phys. Fluids.

    Google Scholar 

  68. C. Bustamante, J, F. Marko, E. D. Siggia and S. Smith, “Entropic elasticity of X-phage DNA, ” Science, Vol. 265, 1500 (1994).

    Article  Google Scholar 

  69. R. G. Larson, Hua Hu, D. E. Smith and S. Chu, “Brownian dynamics simulation of a DNA molecules in an extensional flow field,” J. Rheol. Vol. 43, 267 (1999).

    Article  Google Scholar 

  70. U. S. Argarwal, A. Dutta and R. A. Mashelkar, “Migration of macromolecules under flow: the physical origin and engineering implications,” Chem. Engng. Sci., Vol. 49, 1693 (1994).

    Article  Google Scholar 

  71. H. P. Babcock, D. E. Smith, J. S. Hur, E. S.G. Shaqfeh and S. Chu, “Relating the microscopic and Macroscopic response of a polymeric fluid in a shearing flow,” Phys. Rev. Lett., Vol. 85, 2018 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fan, X., Nhan, PT., Ng, T.Y., Wu, X., Xu, D. (2002). Nano and Micro Channel Flows of Biomolecular Suspension. In: Tay, F.E.H. (eds) Microfluidics and BioMEMS Applications. Microsystems, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3534-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3534-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5316-2

  • Online ISBN: 978-1-4757-3534-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics