Skip to main content

Microfluidic Devices on Printed Circuit Board

  • Chapter
Book cover Microfluidics and BioMEMS Applications

Part of the book series: Microsystems ((MICT,volume 10))

Abstract

This chapter discusses a new approach for fabrication of microfluidic devices based on printed circuit board (PCB) technology. The chapter shortly describes the basic process steps in PCB fabrication considering the special needs of fluidic components to make it easier to understand the technological approach. Design, fabrication and characteristics of a number of sensors and actuators are presented. Results of active component such as diffuser/nozzle pumps, peristaltic pumps, check-valve pumps and sensors such as pressure sensors, flow sensors, bubble sensors, and pH sensors prove the feasibility of this new fabrication concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walter Lang, “Reflections on the future of microsystems,” Sensors and Actuators A, Vol. 72, 1 (1999).

    Article  Google Scholar 

  2. MEMS 1999 — Emerging Applications and Markets (System Planning Corporation, 1999).

    Google Scholar 

  3. Microfluidic systems — new products, MST-News, No. 17 (October 1996).

    Google Scholar 

  4. P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics — a review,” J. Micromech. Microeng., Vol. 3, 168 (1993).

    Article  Google Scholar 

  5. M. Elwenspoek, T. S. Lammerink, R. Miyake, and J. H. J. Fluitman, “Towards integrated microliquid handling system,” J. Micromech. Microeng., Vol. 4, 227 (1994).

    Article  Google Scholar 

  6. G. Stemme, “Micro fluid sensors and actuators,” Proc. 6th International Symposium on Micro Machine and Human Science, Vol. 4, 45 (1994).

    Google Scholar 

  7. B. L. Gray, D. Jaeggi, N. J. Mourlas, B. P. van Drieenhuizen, K. R. Williams, N. I. Maluf, and G. T. A. Kovacs, “Novel interconnection technologies for integrated microfluidic system,” Sensors and Actuators A, Vol. 77, 57 (1999).

    Article  Google Scholar 

  8. J. Jang and S. S. Lee, “Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,” Sensors and Actuators A, Vol. 80, 84 (2000).

    Article  Google Scholar 

  9. D. A. Patterson and J. L. Hennessy, Cost and trends in cost, Chapter 1.4 in Computer architecture - a quantitative approach, pp. 18–28 ( Morgan Kaufmann Publishers, San Francisco, 1997 ).

    Google Scholar 

  10. G. Herrmann (Ed.), Handbuch der Leiterplattentechnik, Vol. 3, Eugen G. Leuze Verlag, ( Saulgau, Germany, 1993 ).

    Google Scholar 

  11. T. S. J. Lammerink, V. L. Spiering, M. Elwenspoek, J. H. J. Fluitman, and A. van den Berg, “Modular concept for fluid handling systems: a demonstrator micro analysis system,” Proc. MEMS 96, 389 (1996).

    Google Scholar 

  12. T. Merkel, M. Graeber, and L.Pagel, “A new technology for fluidic microsystems based on PCB technology,” Sensors and Actuators A, Vol. 77, 98 (1999).

    Google Scholar 

  13. T. Merkel, L.Pagel, and H.-W. Glock, “Electric fields in fluidic channels and sensors applications with capacitance, ” Sensors and actuators A, Vol. 80, 1 (2000).

    Article  Google Scholar 

  14. S. Richter, A. Wego, and L.Pagel. Wego, and L.Pagel, “Fabrication of micro-fluidic devices using PCB-technology,” Proc. Int. MEMS Workshop 2001, 4–6 July, NUS Singapore, 106 (2001).

    Google Scholar 

  15. N.-T. Nguyen, X. Huang, “Microfluidic devices based on PCB-technology,” Proc. Int. MEMS Workshop 2001, 4–6 July, NUS Singapore, 722 (2001).

    Google Scholar 

  16. H.-J. Hanke, Baugruppentechnologie der Elektonik — Leiterplatten, 15` Ed. ( Verlag Technik GmbH, Berlin, 1994 ).

    Google Scholar 

  17. G. Herrmann and K. Egerer (Eds.), Handbuch der Leiterplattentechnik — Band.: Neue Verfahren, Neue Technologien, 15t Ed., Eugen G. Leuze ( Verlag Saulgau, Germany, 1991 ).

    Google Scholar 

  18. W. Scheel (Ed.), Baugruppentechnologie der Elektronik — Montage, 1st Ed., (Verlag Technik GmbH, Berlin, 1997 ).

    Google Scholar 

  19. J. Wissink, A. Prak, M. Wehrmeijer, and R. Mateman, “Novel low cost modulas assembly technology for µTAS using PCB-technology,” Proc. MICRO.tec 2000, VDE Verlag Berlin, Vol. 2, 51 (2000).

    Google Scholar 

  20. N. T. Nguyen, S. Richter, S. Schubert, J. Mehner, W. Doetzel, and T. Gessner, “Micro dosing system,” Proc. of SPIE Vol. 3514, 415 (1998).

    Article  Google Scholar 

  21. J. W. Beams, Structure and properties of thin films, in: C. A. Neugebaur, J. B. Newkirk, and D. A. Vermilyea (Eds.) ( Wiley, New York, 1959 ).

    Google Scholar 

  22. E. I. Bromley, J. N. Randall, D. C. Flanders, and R. W. Mountain, “A technique for the determination of stress in thin films,” J. of Vac. Sc. & Technology B, Vol. 1, 1364 (1983).

    Article  Google Scholar 

  23. Kapton Polyimidfolie — Zusammenfassung der Eigenschaften, Product description H38492–2, DuPont (1996).

    Google Scholar 

  24. L. Lencioni, M. Carrozza, A. Menciassi, D. Accoto, N. Croce, and P.Dario, “A micromechatronic system for oil supply to momentum wheels bearing in space satellites,” Artificial and natural perception: proceedings of the 2nd Italian Conference on Sensors and Microsystems, p. 338 (1997).

    Google Scholar 

  25. J. G. Smits, “Piezoelectric micropump with three valves working peristaltically,” Sensors Actuators A, Vol. 40, 203 (1990).

    Article  Google Scholar 

  26. Aders Olsson, “Valveless diffuser micropumps,” Ph. D. Thesis, Royal Institue of Technology, Sweden (1998).

    Google Scholar 

  27. F. K. Forster, L. Bardell, M. A. Afromowitz, N. R. Sharma, and A. Blanchard, “Design, fabrication and testing of fixed-valve micropumps,” Proc. of ASME Fluids Engineering Division, IMECE, Vol. 234, 39 (1995).

    Google Scholar 

  28. N. T. Nguyen and R. M. White, “Design and optimization of an ultrasonic flexural plate wave micropump using numerical simulation,” Sensors Actuators A, Vol. 77, 229 (1999).

    Article  Google Scholar 

  29. N. T. Nguyen, A. H. Meng, J. Black, and R. M. White, “Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micro pumps,” Sensors Actuators A, Vol. 79, 115 (1999).

    Article  Google Scholar 

  30. A. E. Herr, J. I. Molho, T. W. Kenny, J. G. Santiago, M. G. Mungal, and M. G. Garguilo, “Variation of capillary wall potential in electrokinetic flow,” Proc. of Tranducers 99, 710 (1999).

    Google Scholar 

  31. M. Graeber, “Entwicklung einer Technologie fuer fluidische Mikrosysteme auf Basis der Leiterplattentechnologie,” Ph. D. Thesis, University of Rostock, Germany (1999).

    Google Scholar 

  32. K.-P. Kaemper, J. Doepper, W. Ehrfeld and S. Oberbeck, “A self-filling low cost membrane micropump,” IEEE Workshop on MEMS 1998.

    Google Scholar 

  33. R. Linneman et al., “A self-priming and bubble-tolerant piezoelectric silicon micropump for liquid and gases,” IEEE Workshop on MEMS 1998.

    Google Scholar 

  34. N. T. Nguyen, Micromachined flow sensors: a review, Flow Measurement and Instrumentation, p. 7–16 (Elsevier, 1997 ).

    Google Scholar 

  35. L. Rosengren, J. Soederkvist and L. Smith, “Micromachined sensor structures with linear capacitive response,” Sensors Actuators A, Vol. 31, 200 (1992).

    Article  Google Scholar 

  36. G. Meng and W. H. Ko, “Modeling of circular diaphragm and spreadsheet solution programming for touch mode capacitive sensors,” Sensors Actuators A, Vol. 75, 45 (1999).

    Article  Google Scholar 

  37. X. Li, M. Bao and S. Shen, “Study on linearization of silicon capacitive pressure sensors,” Sensors Actuators A, Vol. 63, 1 (1997).

    Article  MATH  Google Scholar 

  38. T. Merkel, “Fluidische Mikrosysteme auf der Basis der Leiterplattentechnologie,” Ph. D. Thesis, University of Rostock, Germany (1999).

    Google Scholar 

  39. C. Laeritz, “Konzeption, Konstruktion und Realisierung eines mikrofluidischen Supportsystems auf Basis der Leiterplattentechnologie,” Ph. D. Thesis, University of Rostock, Germany (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Richter, S., Nguyen, NT., Wego, A., Pagel, L. (2002). Microfluidic Devices on Printed Circuit Board. In: Tay, F.E.H. (eds) Microfluidics and BioMEMS Applications. Microsystems, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3534-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3534-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5316-2

  • Online ISBN: 978-1-4757-3534-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics