Skip to main content

Short Notes on Particle Image Velocimetry for Micro/Nano Fluidic Measurements

  • Chapter
Microfluidics and BioMEMS Applications

Part of the book series: Microsystems ((MICT,volume 10))

Abstract

Particle image velocimetry (PIV) has emerged as an effective and mature tool for flow visualization and measurement technique for its non-intrusive nature. The basic working principle of a PIV system is deriving the flow velocity from particles’ motion in an interrogation window by determining the average displacement within a short period. This approach only yields velocity accuracy up to the first order and inherently assumes that particles travel freely while faithfully following the flow. We briefly discuss the application of PIV in micro/nano fluidic measurements by addressing several important issues, such as the limit of particle size, the limit of diffraction of light, and the instrumentation. Lastly, we include some research directions that we plan to carry out in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Adrian, “Dynamic ranges of velocity and spatial resolution of particle image velocimetry,” Measurement Sci. Tech., Vol. 8, 1393 (1997).

    Article  Google Scholar 

  2. R. J. Adrian, T. Asanuma, D. F. G. Durao, F. Durst, J. H. Whitelaw, “Laser anemometry in fluid mechanics-III, Selected papers from the Third international symposium on applications of laser anemometry of fluid mechanics,” Ladoan, Lisbon, Portugal (1988).

    Google Scholar 

  3. E. O. Brigham, The fast Fourier transform ( Prentice-Hall, New Jersey, 1974 ).

    MATH  Google Scholar 

  4. J. Kompenhans, L. Dieterle, H. Vollmers, R. Stuff, G. Schneider, T. Dewhirst, M. Raffel, C. Miller, J. C. Monnier, K. Pengel, “Aircraft wake vortex investigations by means of particle image velocimetry” measurement technique and analysis methods,“ In Proceedings of 3rd International Workshop on PN, Santa Barbara, USA (1999).

    Google Scholar 

  5. C. D. Meinhart, S. T. Wereley, J. G. Santiago, “PN measurements of a microchannel flow,” Experiments fluids, Vol. 27, 414 (1999).

    Article  Google Scholar 

  6. K. V. Sharp, “Experimental investigation of liquid and particle-laden flows in microtubes,” Ph. D. Thesis, University of Illinois at Urbana-Champaign (2001).

    Google Scholar 

  7. R. D. Keane and R. J. Adrian, “Theory of cross-correlation analysis of PN images,” Appl. Scientific Res., Vol. 49, 191–215 (1992).

    Article  Google Scholar 

  8. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, R. J. Adrian, “A particle image velocimetry system for microfluidics,” Experiments Fluids, Vol. 25, 316 (1998).

    Article  Google Scholar 

  9. A. Einstein, The Brownian Movement ( Methuen & Co., London, 1926 ).

    MATH  Google Scholar 

  10. R. J. Adrian and C. S. Yao, “Development of pulsed laser velocimetry for measurement of fluid flow,” in Proceedings, 8th Biennial Symposium on Turbulence, G. Patterson and J. L. Zakin, Eds., 170–186 (1984).

    Google Scholar 

  11. M. Born and E. Wolf, Principles of optics ( Pergamon Press, Oxford, 1991 ).

    Google Scholar 

  12. R. J. Adrian and C. S. Yao, “Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials,” Appl. Optics, Vol. 24, 44 (1985).

    Article  Google Scholar 

  13. A. K. Prasad, R. J. Adrian, C. C. Landreth, P. W. Offutt, “Effect of resolution on the speed and accuracy of particle image velocimetry interrogation,” Experiments Fluids, Vol. 13, 105 (1992).

    Article  Google Scholar 

  14. M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry: A Practical Guide ( Sringer, Berlin, 1998 ).

    Google Scholar 

  15. C. D. Meinhart, S. T. Wereley, M. H. B. Gray, “Volume illumination for two-dimensional particle image velocimetry,” Measurement Sci. Tech., Vol. 11, 809 (2000).

    Article  Google Scholar 

  16. P. H. Paul, M. G. Garguilo, D. J. Rakestraw, “Imaging of pressure-and electrokinetically driven flows through open capillaries,” Anal. Chem., Vol. 70, 2459 (1998).

    Article  Google Scholar 

  17. J. B. Knight, A. Vishwanath, J. P. Brody, R. H. Austin, “Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds,” Phys. Rev. Lett., Vol. 80, 3863 (1998).

    Article  Google Scholar 

  18. J. P. Brody and P. Yager, “Diffusion-Based Extraction in a Microfabricated Device,” Sensors Actuators, Vol. 58, 13 (1997).

    Article  Google Scholar 

  19. J. Pfahler, J. Harley, H. Bau, “Gas and Liquid Flow in Small Channels,” Micromechanical Sensors, Actuators, and Systems, ASME DSC Vol. 32, 49 (1991).

    Google Scholar 

  20. J. Van Alsten and S. Granick, “Molecular Tribometry of Ultrathin Liquid Flints,” Phys. Rev. Lett., Vol. 61, 2570 (1988).

    Article  Google Scholar 

  21. L. Bocquet and J.-L. Barrat, “Hydrodynamic Boundary Conditions and Correlation Functions of Confined Fluids,” Phys. Rev. Lett., Vol. 70, 2726 (1993).

    Article  Google Scholar 

  22. N. V. Churaev, V. D. Sobolev, A. N. Somov, “Slippage of Liquids over Lyophobic Solid Surfaces,” Journal of Colloid and Interface Science,“ Vol. 97, 574 (1984).

    Article  Google Scholar 

  23. J. P. Brody, “Fluid and Cell Transport through a Microfabricated Flow Chamber,” Ph. D. Thesis, Princeton University (1994).

    Google Scholar 

  24. Y. Gogotsi, J. A. Libera, A. G. Yazicioglu, and C. M. Megaridis, “In-situ Fluid Experiments in Carbon Nanotubes,” Materials Research Society Symposium Proceedings, Vol. 633, A7. 4. 1–6 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, C.Y., Tay, F.E.H. (2002). Short Notes on Particle Image Velocimetry for Micro/Nano Fluidic Measurements. In: Tay, F.E.H. (eds) Microfluidics and BioMEMS Applications. Microsystems, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3534-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3534-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5316-2

  • Online ISBN: 978-1-4757-3534-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics