Freeze Bath Inversion for Estimation of Geoacoustic Parameters

  • N. Ross Chapman
  • Lothar Jaschke


This chapter describes a new approach for estimating geoacoustic model parameters by matched field inversion of broadband data. The objectives are to design an efficient method to invert accurate estimates of the geoacoustic parameters, and obtain statistical measures of the confidence limits. The essential requirements for the inversion are an efficient search mechanism for exploring the multidimensional model parameter space, and a cost function and propagation model that are appropriate for broadband data. The method should also be robust to sources of mismatch in the experiment, such as imprecise knowledge of the experimental geometry or of the geoacoustic model itself. In this approach, the cost function is based on a multifrequency processor that matches the measured waveform with modeled waveforms that are calculated by ray theory. The search process is a statistical freeze bath algorithm that provides a representation of the distribution of models that fit the data well. The efficiency of the search is improved by reparameterizing, using new parameters based on the covariance of the sampled models. The method is applied to synthetic data that simulate the environment of the Haro Strait tomography experiment.


Inverse Problem Energy Function Compressional Speed Synthetic Waveform Covariance Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BF90]
    A. Basu and L.N. Frazer. Rapid determination for the critical temperature in simulated annealing. Science, 249:1409–1412, 1990.MathSciNetADSMATHCrossRefGoogle Scholar
  2. [C+92]
    M.D. Collins, N.A. Kuperman, and H. Schmidt. Nonlinear inversion for ocean bottom properties. J. Acoust. Soc. Am., 92:2770–2883, 1992.ADSCrossRefGoogle Scholar
  3. [C+97]
    N.R. Chapman, L. Jaschke, M.A. McDonald, H. Schmidt and M. Johnson. Low-frequency geoacoustic tomography experiments using light bulb sound sources in the Haro Strait sea trial. MTS/IEEE Oceans97, 2:763–768, 1997.CrossRefGoogle Scholar
  4. [CC88]
    RW. Cary and C.H. Chapman. Automatic one-dimensional waveform inversion of marine seismic reflection data. Geophys. J., 93:527–546, 1988.ADSMATHCrossRefGoogle Scholar
  5. [CF95]
    M.D. Collins and L. Fishman. Efficient navigation of parameter landscapes. J. Acoust. Soc. Am., 98:1637–1644, 1995.ADSCrossRefGoogle Scholar
  6. [CL96]
    N.R. Chapman and C.E. Lindsay. Matched field inversion for geoacoustic parameters in shallow water. IEEE J. Ocean. Eng., 21:347–354, 1996.CrossRefGoogle Scholar
  7. [FD99]
    M.R. Fallat and S.E. Dosso. Geoacoustic inversion via local, global and hybrid algorithms. J. Acoust. Soc. Am., 105:3219–3230, 1999.ADSCrossRefGoogle Scholar
  8. [Ger94]
    P. Gerstoft. Inversion of seismo-acoustic data using genetic algorithms and a posteriori probability distributions. J. Acoust. Soc. Am., 95:770–782, 1994.ADSCrossRefGoogle Scholar
  9. [Ger95]
    P. Gerstoft. Inversion of acoustic data using a combination of genetic algorithms and the Gauss-Newton approach. J. Acoust. Soc. Am., 97:2181–2190, 1995.ADSCrossRefGoogle Scholar
  10. [Ger96]
    P. Gerstoft and D.F. Gingras. Parameter estimation using multi-frequency, range-dependent acoustic data in shallow water. J. Acoust. Soc. Am., 99:2839–2850, 1996.ADSCrossRefGoogle Scholar
  11. [GM98]
    P. Gerstoft and C.F. Mecklenbrauker. Ocean acoustic inversion with estimation of a posteriori probability distributions. J. Acoust. Soc. Am., 104:808–819, 1998.ADSCrossRefGoogle Scholar
  12. [Ham80]
    E.L. Hamilton. Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am., 68:1313–1340, 1980.ADSCrossRefGoogle Scholar
  13. [LC93]
    C.E. Lindsay and N.R. Chapman. Matched field inversion for geoacoustic model parameters using adaptive simulated annealing. IEEE J. Ocean. Eng., 18:224–231, 1993.CrossRefGoogle Scholar
  14. [Men84]
    W. Menke. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, New York, 1984.Google Scholar
  15. [MT95]
    K. Mosegaard and A. Tarantola. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res., 100:12431–12447, 1995.ADSCrossRefGoogle Scholar
  16. [Rot85]
    D.H. Rothman. Nonlinear inversion, statistical mechanics and residual static corrections. Geophysics, 50:2784–2796, 1985.ADSCrossRefGoogle Scholar
  17. [Rub81]
    R.Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley, New York, 1981.MATHCrossRefGoogle Scholar
  18. [SS91]
    M.K. Sen and P.L. Stoffa. Nonlinear one-dimensional seismic waveform inversion using simulated annealing. Geophysics, 56:1624–1638, 1991.ADSCrossRefGoogle Scholar
  19. [SS96]
    M.K. Sen and P.L. Stoffa. Bayesian inference, Gibbs sampler and uncertainty estimation in geophysical inversion. Geophys. Prospect., 44:313–350, 1996.ADSCrossRefGoogle Scholar
  20. [Tar87]
    A. Tarantola. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier Science, Amsterdam, 1987.MATHGoogle Scholar
  21. [Tol96]
    A. Tolstoy. Using matched field processing to estimate shallow-water bottom properties from shot data in the Mediterranean Sea. IEEE J. Ocean. Eng., 21:471–479, 1996.CrossRefGoogle Scholar
  22. [WT87]
    E.K. Westwood and C.T. Tindle. Shallow-water time series simulation using ray theory. J. Acoust. Soc. Am., 81:1752–1761, 1987.ADSCrossRefGoogle Scholar
  23. [WV87]
    E.K. Westwood and P.J. Vidmar. Eigenray finding and time series simulation in a layered-bottom ocean. J. Acoust. Soc. Am., 81:912–924, 1987.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • N. Ross Chapman
  • Lothar Jaschke

There are no affiliations available

Personalised recommendations