Continuous Single-Species Population Models with Delays

  • Fred Brauer
  • Carlos Castillo-Chávez
Part of the Texts in Applied Mathematics book series (TAM, volume 40)


Up to now in our study of continuous population models we have been assuming that x′(t), the growth rate of population size at time t, depends only on x(t), the population size at the same time t. However, there are situations in which the growth rate does not respond instantaneously to changes in population size. One of the first models incorporating a delay was proposed by Volterra (1926) to take into account the delay in response of a population’s death rate to changes in population density caused by an accumulation of pollutants in the past. Other causes of response delays which have been mentioned in the biological literature include differences in resource consumption with respect to age structure, migration and diffusion of populations, gestation and maturation periods, delays in behavioral response to environmental changes, and dependence of a population on a food supply that requires time to recover from grazing. In deriving a mathematical model to reflect a particular biological delay mechanism one must consider carefully how this mechanism affects the growth rate. One approach to modeling delays that has been used is formulation of a discrete model (or difference equation) and consideration of the delay in the time between steps. While this is appropriate for populations with a discrete reproduction cycle, such as many fish populations, it does not accurately model populations with continuous growth and time lags. The metered models studied in Section 2.5 allow for a continuous death process but involve a discrete reproduction stage.


Computer Algebra System Positive Equilibrium Negative Real Part Maximum Sustainable Yield Scramble Competition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Fred Brauer
    • 1
  • Carlos Castillo-Chávez
    • 2
    • 3
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Dept. of Theoretical and Applied MechanicsMathematical and Theoretical Biology InstituteUSA
  3. 3.Biometrics DepartmentCornell UniversityIthacaUSA

Personalised recommendations