Advertisement

Imaging of Signal Transduction and Antisense Imaging

  • David J. Yang
  • E. Edmund Kim

Abstract

An estimated 600,000 human deaths result from cancer, and 1.5 million new cases of cancer are diagnosed each year. Approximately 5% of cancers are hereditary. The survival rate of patients diagnosed with early-stage cancer is higher than those with advanced-stage disease [1–3]. The diagnosis of cancer is made by pathological evaluation of tissue. Due to rapid developments in molecular biology, more and more biomarkers and gene markers are being developed for early detection of tumors. Trends in molecular biology research have focused from drug administration followed by angiogenesis to drugs in the micromolecular pathway. Molecular pathways that mediate signal transduction, cell-cycle traversal, apoptosis, hypoxia, and necrosis provide better understanding of molecular-targeted therapy.

Keywords

Breast Cancer Endometrial Cancer Tamoxifen Therapy Dictyostelium Discoideum Folate Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jordan VC. The role of tamoxifen in the treatment and prevention of breast cancer. Curr Probl Cancer 1992;16:129–176.PubMedGoogle Scholar
  2. 2.
    Neijt JP. New therapy for ovarian cancer. New Engl J Med 1996;334:50–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Feehery K, Benjamin I. NIH Consensus Conference. Ovarian cancer: screening, treatment and follow-up. JAMA 1995;273:491–497.CrossRefGoogle Scholar
  4. 4.
    Brock CS, Meikle SR, Price P. Does 18F-fluorodeoxyglucose metabolic imaging of tumors benefit oncology? Eur J Nucl Med 1997;24: 691–705.PubMedGoogle Scholar
  5. 5.
    Verbruggen AM, Nosco DL, Van Nerom CG, et al. 99mTc-L,L-ethylenedicysteine: a renal imaging agent. Labeling and evaluation in animals. J Nucl Med 1992;33:551–557.PubMedGoogle Scholar
  6. 6.
    Van Nerom CG, Bormans GM, De Roo MJ, et al. First experience in healthy volunteers with 99mTc-L,L-ethylenedicysteine, a new renal imaging agent. Eur J Nucl Med 1993;20:738–746.PubMedCrossRefGoogle Scholar
  7. 7.
    Surma MJ, Wiewiora J, Liniecki J. Usefulness of 99mTc-N,N′-ethylene-1-dicysteine complex for dynamic kidney investigations. Nucl Med Commun 1994;15: 628–635.PubMedCrossRefGoogle Scholar
  8. 8.
    Wang J, Maziarz K, Ratnam M. Recognition of the carboxyl-terminal signal for GPI modification requires translocation of its hydrophobic domain across the ER membrane. J Mol Biol 1999;286:1303–1310.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang J, Shen F, Yan W. Proteolysis of the carboxyl-terminal GPI signal independent of GPI modification as a mechanism for selective protein secretion. Biochemistry 1997;36(47): 14583–14592.PubMedCrossRefGoogle Scholar
  10. 10.
    Chung KN, Roberts S, Kim CH, et al. Rapid turnover and impaired cell-surface expression of the human folate receptor in mouse L(tk-) fibroblasts, a cell line defective in glycosylphosphatidylinositol tail synthesis. Arch Biochem Biophys 1995;322:228–234.PubMedCrossRefGoogle Scholar
  11. 11.
    Blusch J, Alexander S, Nellen W. Multiple signal transduction pathways regulate discoidin I gene expression in Dictyostelium discoideum. Differentiation 1995;58:253–260.PubMedCrossRefGoogle Scholar
  12. 12.
    Janssens PM, Van Haastert PJ. Molecular basis of transmembrane signal transduction in Dictyostelium discoideum. Microbiol Rev 1987; 51:396–418.PubMedGoogle Scholar
  13. 13.
    Bernstein RL, Rossier C, van Driel R, et al. Folate deaminase and cyclic AMP phosphodiesterase in Dictyostelium discoideum: their regulation by extracellular cyclic AMP and folic acid. Cell Differ 1981;10:79–86.PubMedCrossRefGoogle Scholar
  14. 14.
    Lewis CM, Smith AK, Nguyen C, et al. PMA alters folate receptor distribution in the plasma membrane and increases the rate of 5-methyltetrahydrofolate delivery in mature MA104 cells. Biochim Biophys Acta 1998;1401: 157–169.PubMedCrossRefGoogle Scholar
  15. 15.
    Orr RB, Kreisler AR, Kamen BA. Similarity of folate receptor expression in UMSCC 38 cells to squamous cell carcinoma differentiation markers. J Natl Cancer Inst 1995;87:299–303.PubMedCrossRefGoogle Scholar
  16. 16.
    Hsueh CT, Dolnick BJ. Altered folate-binding protein mRNA stability in KB cells grown in folate-deficient medium. Biochem Pharmacol 1993;45:2537–2545.PubMedCrossRefGoogle Scholar
  17. 17.
    Weitman SD, Lark RH, Coney LR, et al. Distribution of folate GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52: 3396–3400.PubMedGoogle Scholar
  18. 18.
    Campbell IG, Jones TA, Foulkes WD, Trowsdale J. Folate-binding protein is a marker for ovarian cancer. Cancer Res 1991;51:5329–5338.PubMedGoogle Scholar
  19. 19.
    Holm J, Hansen SI, Hoier-Madsen M, Sondergaard K, Bzorek M. Folate receptor of human mammary adenocarcinoma. APMIS 1994;102: 413–419.PubMedCrossRefGoogle Scholar
  20. 20.
    Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissue in vivo and in established cell lines. Cancer (Phila) 1994;73:2432–2443.CrossRefGoogle Scholar
  21. 21.
    Franklin WA, Waintrub M, Edwards D, et al. New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma. Int J Cancer (Suppl) 1994;8:89–95.CrossRefGoogle Scholar
  22. 22.
    Weitman SD, Frazier KM, Kamen BA. The folate receptor in central nervous system malignancies of childhood. J Neuro-Oncol 1994;21:107–112.CrossRefGoogle Scholar
  23. 23.
    Fernandez MD, Burn JI, Sauven PD, et al. Activated estrogen receptors in breast cancer and response to endocrine therapy. Eur J Cancer Clin Oncol 1984;20:41–46.PubMedCrossRefGoogle Scholar
  24. 24.
    Vering A, Vockel A, Stegmuller M, et al. Immuno-biochemical assay for determination of nuclear steroid receptors during tamoxifen therapy. Cancer Res Clin Oncol 1993;119: 415–420.CrossRefGoogle Scholar
  25. 25.
    Creasman WT, McCarty KS, Barton TK. Clinical correlates of estrogen- and progesteronebinding proteins in human endometrial adenocarcinoma. Obstet Gynecol 1980;55:363–368.PubMedGoogle Scholar
  26. 26.
    Quinn MA, Pearce P, Fortune DW. Correlation between cytoplasmic steroid receptors and tumour differentiation and invasion in endometrial carcinoma. Br J Obstet Gynaecol 1985;92: 399–405.PubMedCrossRefGoogle Scholar
  27. 27.
    Martin JD, Hahnel R, McCartney T. The effect of estrogen receptor status on survival in patients with endometrial cancer. Am J Obstet Gynecol 1983;147:322–327.PubMedGoogle Scholar
  28. 28.
    Schutze N, Kraft V, Deerberg F, et al. Functions of estrogens and antiestrogens in the rat endometrial adenocarcinoma cell lines RUCA-1 and RUCA-II. Int J Cancer 1992;52:941–949.PubMedCrossRefGoogle Scholar
  29. 29.
    Hamm JT, Allegra JC. Hormonal therapy for cancer. In: Witts RE, ed. Manual of Oncologic Therapeutics. New York: Lippincott, 1991:122–126.Google Scholar
  30. 30.
    Yang DJ, Cherif A, Tansey W, et al. N,N-Diethylfluoromethyltamoxifen: synthesis, assignment of 1H and 13C spectra and receptor assay. Eur J Med Chem 1992;27:919–924.CrossRefGoogle Scholar
  31. 31.
    Wittliff JL. Steroid-hormone receptor in breast cancer. Cancer Res 1984;53:630–643.Google Scholar
  32. 32.
    Lum SS, Woltering EA, Fletcher WS, et al. Changes in serum estrogen levels in women during tamoxifen therapy. Excerpta Med 1997; 173:399–402.Google Scholar
  33. 33.
    Barakat RR. The effect of tamoxifen on the endometrium. Oncology 1995;9:129–142.PubMedGoogle Scholar
  34. 34.
    Uziely B, Lewin A, Brufman G, et al. The effect of tamoxifen on the endometrium. Breast Cancer Res Treat 1993;26:101–105.PubMedCrossRefGoogle Scholar
  35. 35.
    Fisher B, Costantino JP, Redmond CK, et al. Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the national surgical adjuvant breast and bowel project (NSABP) B-14. J Natl Cancer Inst 1994;86:527–537.PubMedCrossRefGoogle Scholar
  36. 36.
    Gishizky ML. Tyrosine kinase induced mitogenesis breaking the link with cancer. In: Bristol JA, ed. Annual Reports in Medicinal Chemistry, Vol. 30. New York: Academic Press, 1995:247–253.Google Scholar
  37. 37.
    Moasser MM, Sepp-Lorenzino L, Kohl NE, et al. Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc Natl Acad Sci USA 1998;95:1369–1374.PubMedCrossRefGoogle Scholar
  38. 38.
    Gibbs JB, Kohl NE, Koblan KS, et al. Farnesyltransferase inhibitors and anti-Ras therapy. Breast Cancer Res Treat 1996;38:75–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Sepp-Lorenzino L, Ma Z, Rands E, et al. A peptidomimetic inhibitor of farnesyl: protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res 1995;55:5302–5309.PubMedGoogle Scholar
  40. 40.
    Sepp-Lorenzino L, Rosen N. A farnesyl-protein transferase inhibitor induces p21 expression and G1 block in p53 wild type tumor cells. J Biol Chem 1998;273:243–251.CrossRefGoogle Scholar
  41. 41.
    Riva C, Chauvin C, Pison C, et al. Cellular physiology and molecular events in hypoxia-induced apoptosis. Anticancer Res 1998;18:4729–4736.PubMedGoogle Scholar
  42. 42.
    Shizukuda Y, Helisch A, Yokota R, et al. Downregulation of protein kinase c delta activity enhances endothelial cell adaptation to hypoxia. Circulation 1999;100:1909–1916.PubMedCrossRefGoogle Scholar
  43. 43.
    Tomasevic G, Shamloo M, Israeli D, et al. Activation of p53 and its target genes p21(WAF1/Cipl) and PAG608/Wig-1 in ischemic preconditioning. Brain Res Mol Brain Res 1999;70:304–313.PubMedCrossRefGoogle Scholar
  44. 44.
    Rupnow BA, Alarcon RM, Giaccia AJ, et al. p53 mediates apoptosis induced by c-Myc activation in hypoxic or gamma irradiated fibroblasts. Cell Death Differ 1998;5:141–147.PubMedCrossRefGoogle Scholar
  45. 45.
    Stempien-Otero A, Karsan A, Cornejo CJ, et al. Mechanisms of hypoxia-induced endothelial cell death. Role of p53 in apoptosis. J Biol Chem 1999;274:8039–8045.PubMedCrossRefGoogle Scholar
  46. 46.
    Yang DJ, Ilgan S, Higuchi T, et al. Noninvasive assessment of tumor hypoxia with 99mTc-labeled metronidazole. Pharm Res 1999;16:743–750.PubMedCrossRefGoogle Scholar
  47. 47.
    Ratner S, Clarke HT. The action of formaldehyde upon cysteine. J Am Chem Soc 1937;59: 200–206.CrossRefGoogle Scholar
  48. 48.
    Blondeau P, Berse C, Gravel D. Dimerization of an intermediate during the sodium in liquid ammonia reduction of L-thiazolidine-4-carboxylic acid. Can J Chem 1967;45:49–52.CrossRefGoogle Scholar
  49. 49.
    Yang DJ, Tewson T, Tansey, W, et al. Halogenated analogs of tamoxifen: synthesis, receptor assay and inhibition of MCF7 cells. J Pharm Sci 1992; 81:622–625.PubMedCrossRefGoogle Scholar
  50. 50.
    Yang DJ, Li C, Kuang L-R, et al. Imaging, biodistribution and therapy potential of halogenated tamoxifen analogues. Life Sci 1994;55: 53–67.PubMedCrossRefGoogle Scholar
  51. 51.
    Paik CH, Quadri SM, Reba RC. Interposition of different chemical linkages between antibody and 111In-DTPA to accelerate clearance from non-target organs and blood. Nucl Med Biol 1989;16:475–481.Google Scholar
  52. 52.
    Delpassand ES, Yang DJ, Wallace S, et al. Synthesis, biodistribution and estrogen receptor scintigraphy of an 111In-DTPA-tamoxifen analogue. J Pharm Sci 1996;85:553–559.PubMedCrossRefGoogle Scholar
  53. 53.
    Yang DJ, Wallace S, Delpassand ES, et al. DTPA-tamoxifen and DTPA-retinal: a new combined radiotracer to target breast tumors. Radiology 1995;197:320 (abstract).Google Scholar
  54. 54.
    Chung KN, Saiwaka Y, Paik TH, et al. Stable transfectants of human MCF-7 breast cancer cells with increased levels of the human folate receptor exhibit an increased sensitivity to antifolates. J Clin Invest 1993;91:1289–1294.PubMedCrossRefGoogle Scholar
  55. 55.
    Jordan VC. A current view of tamoxifen for the treatment and prevention of breast cancer. Br J Pharmacol 1993;110:507–517.PubMedCrossRefGoogle Scholar
  56. 56.
    Green S. Modulations of estrogen receptor activity by estrogens and antiestrogens. J Steroid Biochem Mol Biol 1990;37:747–751.PubMedCrossRefGoogle Scholar
  57. 57.
    O’Brian CA, Liskamp RM, Solomon DH, et al. Inhibition of protein kinase C by tamoxifen. Cancer Res 1985;45:2462–2465.PubMedGoogle Scholar
  58. 58.
    Edashige K, Sato E, Akimaru K, et al. Non-steroidal antiestrogen suppresses protein kinase C: its inhibitory effect on interaction of substrate protein with membrane. Cell Struct Funct 1991; 16:273–281.PubMedCrossRefGoogle Scholar
  59. 59.
    Lam HY. Tamoxifen is a calmodulin antagonist in the activation of cAMP phosphodiesterase. Biochem Biophys Res Commun 1984;118:27–32.PubMedCrossRefGoogle Scholar
  60. 60.
    Pollak MN, Huynh HT, Lefevre SP. Tamoxifen reduces serum insulin-like growth factor 1 (IGF-1). Breast Cancer Res Treat 1992;22:91–95.PubMedCrossRefGoogle Scholar
  61. 61.
    Rose DP, Chlebowski RT, Connolly JM, et al. Effects of tamoxifen adjuvant therapy and a lowfat diet or serum binding proteins and estradiol bioavailability in postmenopausal breast cancer patients. Cancer Res 1992;52:5386–5390.PubMedGoogle Scholar
  62. 62.
    Vogel CL, East DR, Vogt W, et al. Response to tamoxifen in estrogen receptor-poor metastatic breast cancer. Cancer (Phila) 1987;60:1184–1189.CrossRefGoogle Scholar
  63. 63.
    Gasparini G, Barbareschi M, Doglioni C, et al. Expression of bcl-2 protein predicts efficacy of adjuvant treatments in operable node-positive breast cancer. Clin Cancer Res 1995;1:189–198.PubMedGoogle Scholar
  64. 64.
    Soubeyran I, Quenel N, Coindre J-M, et al. pS2 protein: a marker improving prediction of response to neoadjuvant tamoxifen in postmenopausal breast cancer patients. Br J Cancer 1996;74:1120–1125.PubMedCrossRefGoogle Scholar
  65. 65.
    Ravdin PM, Green S, Dorr TM, et al. Prognostic significance of progesterone receptor levels in estrogen receptor-positive patients with metastatic breast cancer treated with tamoxifen: results of a prospective southwest oncology group study. J Clin Oncol 1992;10:1284–1291.PubMedGoogle Scholar
  66. 66.
    Elledge RM, Green S, Howes L et al. bcl-2, p53, and response to tamoxifen in estrogen receptorpositive metastatic breast cancer: a southwest oncology group study. J Clin Oncol 1997;15: 1916–1922.PubMedGoogle Scholar
  67. 67.
    Foekens JA, Portengen H, Look MP, et al. Relationship of PS2 with response to tamoxifen therapy in patients with recurrent breast cancer. Br J Cancer 1994;70:1217–1223.PubMedCrossRefGoogle Scholar
  68. 68.
    Borg A, Baldetorp B, Ferno M, et al. ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett 1994;81:137–144.PubMedCrossRefGoogle Scholar
  69. 69.
    Laitzel K, Teramoto Y, Konrad K, et al. Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer. J Clin Oncol 1995;13:1129–1135.Google Scholar
  70. 70.
    Berns EMJ, Foekens JA, Van Staveren IL, et al. Oncogene amplification and prognosis in breast cancer: relationship with systemic treatment. Gene (Amst) 1995;159:11–18.CrossRefGoogle Scholar
  71. 71.
    Nicholson RI, McClelland RA, Gee JMW, et al. Epidermal growth factor receptor expression in breast cancer: association with response to endocrine therapy. Br Cancer Res Treat 1994; 29:117–125.CrossRefGoogle Scholar
  72. 72.
    Silvestrini R, Benini E, Veneroni S, et al. p53 and bcl-2 expression correlates with clinical outcome in a series of node-positive breast cancer patients. J Clin Oncol 1996;114:1604–1610.Google Scholar
  73. 73.
    Wright C, Nicholson S, Angus B, et al. Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer 1992;65: 118–121.PubMedCrossRefGoogle Scholar
  74. 74.
    Yamauchi H, O’Neill A, Gelman R, et al. Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol 1997;15: 2518–2525.PubMedGoogle Scholar
  75. 75.
    Carlomagno C, Perrone F, Gallo C, et al. c-erbB2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases. J Clin Oncol 1996;14:2702–2708.PubMedGoogle Scholar
  76. 76.
    Weinberg RA. Oncogenes and tumor suppressor genes. CA Cancer J Clin 1994;44:160–170.PubMedCrossRefGoogle Scholar
  77. 77.
    Urbain JLC, Shore SK, Vekemans MC, et al. Scintigraphic imaging of oncogenes with antisense probes: does it make sense? Eur J Nucl Med 1995;22:499–504.PubMedCrossRefGoogle Scholar
  78. 78.
    Agrawal S, Temsamani J, Tang JY. Pharmacokinetics, biodistribution and stability of oligodeoxyribonucleotide phosphorothioates. Proc Natl Acad Sci USA 1991;88:7595–7599.PubMedCrossRefGoogle Scholar
  79. 79.
    Stein CA, Cheng Y-C. Antisense oligonucleotides as therapeutic agents-is the bullet really magical? Science 1993;261:1004–1012.PubMedCrossRefGoogle Scholar
  80. 80.
    Pianica-Worms D. Making sense out of antisense: challenges of imaging gene translation with radiolabeled oligonucleotides. J Nucl Med 1994;35:1064–1066.Google Scholar
  81. 81.
    Lu X-M, Fischman AJ, Jyawook SL, et al. Antisense DNA delivery in vivo: targetting to liver by receptor-mediated uptake. J Nucl Med 1994;35: 269–275.PubMedGoogle Scholar
  82. 82.
    Dewanjee MK, Ghafournipour AK, Iapadvanjwala M, et al. Noninvasive imaging of c-myc oncogene mRNA with In-111 labeled antisense probes in a mammary tumor-bearing mouse model. J Nucl Med 1994;35:1054–1063.PubMedGoogle Scholar
  83. 83.
    Elder PS, deVine RJ, Dogle JM. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res Dev 1991;1:141–151.Google Scholar
  84. 84.
    Leonetti J, Degols G, LeBlue B. Biological activity of oligonucleotide-poly-(L-lysine) conjugates: mechanism of cell uptake. Bioconjugate Chem 1990;1:149–153.CrossRefGoogle Scholar
  85. 85.
    Chiang MY, Chan H, Zounes MA, et al. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem 1991;266:18162–18172.PubMedGoogle Scholar
  86. 86.
    Rittner K, Burmester C, Sczakiel G. In vitro selection of fast-hybridizing and effective antisense RNAs directed against the human immunodeficiency virus type 1. Nucleic Acids Res 1993;21:1381–1387.PubMedCrossRefGoogle Scholar
  87. 87.
    Wagner RW, Matteucci MD, Lewis JG, et al. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyimidines. Science 1993;260:1510–1513.PubMedCrossRefGoogle Scholar
  88. 88.
    Cammiller S, Sangrajrang S, Perdercan B, et al. Biodistribution of I-125 tyramine transforming growth factor-β antisense oligonucleotide in athymic mice with a human mammary tumor xenograft following intratumoral injection. Eur J Nucl Med 1996;23:448–452.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • David J. Yang
  • E. Edmund Kim

There are no affiliations available

Personalised recommendations