Ultraviolet Radiation and Exobiology

  • Charles S. Cockell


In comparison to the Earth, extraterrestrial environments possess quite different UV radiation regimes, both in terms of absolute flux and in terms of spectral quality (Horneck et al. 1984; Horneck 1993). For example, the moon has no atmosphere and thus its UV regimen is determined solely by the extraterrestrial spectrum. Mars, on the other hand, has an atmosphere that is one-hundredth the total atmospheric pressure of Earth and is composed of 95% CO2 (carbon dioxide). The surface UV flux is primarily determined by this atmospheric composition, and this flux is very different from that of the Earth. Planets around other stars will also have very different surface UV regimens, determined partly by their atmospheric composition but also by the fact that the spectral quality of light emitted by other stars can be very different from that of our own Sun.


Zenith Angle Habitable Zone Ozone Column Extrasolar Planet Deinococcus Radiodurans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akabane, T., Iwasaki, K., Saito, Y., and Narumi, Y. 1987. The optical thickness of the blue-white cloud near Nix Olympica of Mars in 1982. Publ. Astron. Soc. Jpn. 39:343–359.Google Scholar
  2. Alberts, A.C. Ultraviolet visual sensitivity in desert iguanas: implications for pheromone detection. 1989. Anim. Behav. 38:129–137.CrossRefGoogle Scholar
  3. Barth, C.A., and Dick, M.L. 1974. Ozone and the polar hoods of Mars. Icarus 22:205–211.CrossRefGoogle Scholar
  4. Barth, C.A., Hord, C.W., Stewart, A.I., Lane, A.L., Dick, M.L., and Andersen, G.P. 1973. Mariner 9 ultraviolet spectrometer experiment: seasonal variation of ozone on mars. Science 179:797–798.CrossRefGoogle Scholar
  5. Bernstein, M.P., Sandford, S. A., Allamandola, L.J., Gillette, J.S., Clemett, S.J., and Zare, R.N. 1999. UV Irradiation of polyc ycl ic aromatic hydroc arbons in ices: p roduction of alcohols, quinones, and ethers. Science 283:1135–1138.PubMedCrossRefGoogle Scholar
  6. Boston, P. Low pressure greenhouses and plants for a manned research station on Mars. 1991. J. Br. Interplanet. Soc. 54:189.Google Scholar
  7. Boston, P.J., Ivanov, M.V., and McKay, C.P. 1992. On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95:300–308.PubMedCrossRefGoogle Scholar
  8. Bowmaker, J.K., and Kunz, Y.W. 1987. Ultraviolet receptors, tetrachromatic color vision and retinal mosaics in the brown trout (Salmo trutta): age-dependent changes. Vision Res. 27:2101–2108.PubMedCrossRefGoogle Scholar
  9. Brusca, R.C., and Brusca, G.J. 1990. Invertebrates. Sinauer, Sunderland, MA.Google Scholar
  10. Buhlmann, B., Bossard, P., and Uehlinger, U. 1987. The influence of longwave ultraviolet radiation (UV A) on the photosynthetic activity (14C assimilation) of phytoplankton. J. Plankton Res. 9:935–943.CrossRefGoogle Scholar
  11. Cabrol, N.A., Grin, E.A., Newsom, H.E., Landheim, R., and McKay, C.P. 1999. Hydrogeologic evolution of Gale crater and its relevance to the exobiological exploration of Mars. Icarus 139:235–245.CrossRefGoogle Scholar
  12. Caimi, P., and Eisenstark, A. 1986. Sensitivity of Deinococcus radiodurans to nearultraviolet radiation. Mutat. Res. 162:145–151.PubMedCrossRefGoogle Scholar
  13. Carr, M.H. 1987. Water on Mars. Nature (Lond.) 326:30–35.CrossRefGoogle Scholar
  14. Carr, M.H., and Clow, G.D. 1981. Martian channels and valleys: their characteristics, distribution and age. Icarus 48:91–117.CrossRefGoogle Scholar
  15. Cockell, C.S. 1998. Biological effects of high ultraviolet radiation on early Earth-a theoretical evaluation. J. Theor. Biol. 193:717–729.PubMedCrossRefGoogle Scholar
  16. Cockell, C.S. 1999. Carbon biochemistry and the ultraviolet radiation environments of F, G and K main sequence stars. Icarus 141:399–407.CrossRefGoogle Scholar
  17. Cockell, C.S. 2000. Ultraviolet radiation and the photobiology of Earth’s early oceans. Origins Life Evol. Biosph. 30:467–500.CrossRefGoogle Scholar
  18. Cockell, C.S., and Andrady, A.L. 1999. The martian and extraterrestrial UV radiation environment. I. Biological and closed-loop ecosystem considerations. Acta Astronaut. 44:53–62.PubMedCrossRefGoogle Scholar
  19. Cockell, C.S., Catling, D.C., Davis, W.L., Snook, K., Kepner, R.L., Lee P.C., and McKay, C.P. 2000. The ultraviolet environment of Mars: biological implications past, present and future. Icarus 146:343–360.PubMedCrossRefGoogle Scholar
  20. Craig, C.L., and Bernard, G.D. 1990. Insect attraction to ultraviolet-reflecting spider webs and web decorations. Ecology 71:616–623.CrossRefGoogle Scholar
  21. Friedmann, E.I., Friedmann, R.O., and Weed, R. 1986. Trace fossils of endolithic microorganisms in Antarctica-a model for Mars. Origins Life Evol. Biosph. 16:350–350.CrossRefGoogle Scholar
  22. Garcia-Pichel, F. 1998. Solar ultraviolet and the evolutionary history of cyanobacteria. Origins Life Evol. Biosph. 28:321–347.CrossRefGoogle Scholar
  23. Garcia-Pichel, F., Mechling, M., and Castenholz, R.W. 1994. Diel migrations of microorganisms within a benthic hypersaline mat community. Appl. Environ. Microbiol. 60: 1500–1511.PubMedGoogle Scholar
  24. Gascon, J., Oubina, A., Perez-Lezaun, A., and J. Urmeneta, 1995. Sensitivity of selected bacterial species to UV radiation. Curr. Microbiol. 30:177–182.PubMedCrossRefGoogle Scholar
  25. Gladman, B.J., Burns, J.A., Duncan, M., Lee, P.C., and Levison, H.F. 1996. The exchange of impact ejecta between terrestrial planets. Science 271:1387–1392.CrossRefGoogle Scholar
  26. Gold, W.G., and Caldwell, M.M. 1983. The effects of ultraviolet-B on plant competition in terrestrial ecosystems. Physiol. Plant. 58:435–444.CrossRefGoogle Scholar
  27. Gulick, V.C., and Baker, V.R. 1989. Fluvial valleys and martian paleoclimates. Nature (Lond.) 341:514–516.CrossRefGoogle Scholar
  28. Gulick, V.C., Tyler, D., McKay, C.P., and Haberle, R.M. 1997. Episodic ocean-induced CO2 greenhouse on Mars : implications for fluvial valley formation. Icarus 130:68–86.PubMedCrossRefGoogle Scholar
  29. Haberle, R.M., McKay, C.P., Pollack, J.B., Gwynne, O.E., Atkinson, D.H., Appelbaum, J., Landis, G.A., Zurek, R.W., and Flood, D.J. 1993. Atmospheric effects on the utility of solar power on Mars. In Resources of Near-Earth Space, eds. J.S. Lewis, M.S. Mathews, and M.L. Guerrieri, pp. 845–885. University of Arizona Press, Tucson.Google Scholar
  30. Haberle, R.M., Tyler, D., McKay, C.P., and Davis, W.L. 1994. A model for the evolution of CO2 on Mars. Icarus 109:102–120.PubMedCrossRefGoogle Scholar
  31. Heck, A., Egret, D., Jaschek, M., and Jaschek, C. 1984. IUE Low-Dispersion Spectra Reference Atlas, Part I. Normal Stars. ESA Publ. SP-1052. European Space Agency, Paris.Google Scholar
  32. Hess, S.L., Ryan, J.A., Tillman, J.E., Henry, R.M., and Leovy, C.B. 1980. The annual cycle of pressure on Mars measured at Viking 1 and 2. Geophys. Res. Lett. 7:197–200.CrossRefGoogle Scholar
  33. Horneck, G. 1993. Responses of Bacillus subtilis spores to space environment: results from experiments in space. Origins Life Evol. Biosph. 23:37–52.CrossRefGoogle Scholar
  34. Horneck, G., Bücker, H., Reitz, G., Requardt, H., Dose, K., Martens, K.D., Mennigmann, H.D., and Weber, P. 1984. Microorganisms in the space environment. Science 225: 226–228.PubMedCrossRefGoogle Scholar
  35. Kasting, J.F. 1993. Earth’s early atmosphere. Science 259:920–926.PubMedCrossRefGoogle Scholar
  36. Kasting, J.F. 1997. Warming early Earth and Mars. Science 276:1213–1215.PubMedCrossRefGoogle Scholar
  37. Kasting, J.F., Zahnle, K.J., Pinto, J.P., and Young, A.T. 1989. Sulfur, ultraviolet radiation and the early evolution of life. Origins Life Evol. Biosph. 19:95–108.CrossRefGoogle Scholar
  38. Kasting, J.F., Whitmere, D.P., and Reynolds, R.T. 1993. Habitable zones around main sequence stars. Icarus 101:108–128.PubMedCrossRefGoogle Scholar
  39. Kasting, J.F., Whittet, D.C.B., and Sheldon, W.R. 1997. Ultraviolet-radiation from F-star and K-star and implications for planetary habitability. Origins Life Evol. Biosph. 27:413–420.CrossRefGoogle Scholar
  40. Kim, D., and Watanabe, Y. 1994. Inhibition of growth and photosynthesis of freshwater phytoplankton by ultraviolet A (UV-A) irradiation and subsequent recovery from stress. J. Plankton Res. 16:1645–1654.CrossRefGoogle Scholar
  41. Kuhn, W.R., and Atreya, S.K. 1979. Solar radiation incident on the martian surface. J. Mol. Evol. 14:57–64.PubMedCrossRefGoogle Scholar
  42. Leighton, R.B., and Murray, B.C. 1966. Behavior of carbon dioxide and other volatiles on Mars. Science 153:136–144.PubMedCrossRefGoogle Scholar
  43. Lindner, B.L. 1991. Ozone heating in the martian atmosphere. Icarus 93:354–361.CrossRefGoogle Scholar
  44. Lowe, D.R. 1992. Major events in the geological development of the Precambrian Earth. In The Proterozoic Biosphere: a Multidisciplinary Study, eds. J.W. Schopf and C. Klein, pp. 67–75. Cambridge University Press, Cambridge.Google Scholar
  45. Makino, C.L., Dodd, R.L., Rohlich, P., and Baylor, D.A. 1985. Salamander UV-sensitive cones utilize more than one visual pigment. Biophys. J. 68:A19.Google Scholar
  46. Margulis, L., Walker, J.C.G., and Rambler, M. 1976. Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution. Nature (Lond.) 264:620–624.CrossRefGoogle Scholar
  47. Martin, L.J., James, P.B., Dollfus, A., Iwasaki, K., and Beish, J.D. 1992. Telescopic observations: visual, photographic, polarimetric. In Mars, eds. H.H. Kieffer, Jakosky, B.M., Snyder, C. and Matthews, M.S. pp. 34–70. University of Arizona Press, Tucson.Google Scholar
  48. Mattimore, V., and Battista, J.R. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178:633–637.PubMedGoogle Scholar
  49. McKay, C.P. 1993. Relevance of Antarctic microbial ecosystems to exobiology. In Antarctic Microbiology, ed. E.I. Friedmann, pp. 593–601. Wiley-Liss, New York.Google Scholar
  50. McKay, C.P., and Davis, W.L. 1991. Duration of liquid water habitats on Mars. Icarus 90:214–221.PubMedCrossRefGoogle Scholar
  51. Milot-Roy, V., and Vincent, W.F. 1994. UV radiation effects on photosynthesis: the importance of near-surface thermoclines in a subarctic lake. Arch. Hydrobiol. 43:171–184.Google Scholar
  52. Mojzsis S.J., Arrhenius, G., McCleesan, K.D., Harrison, T.M., Nutman, A.P., and Friend, C.R.L. 1996. Evidence for life on Earth before 3.8 billion years ago. Nature (Lond.) 384:55–59.CrossRefGoogle Scholar
  53. Nienow, J.A., and Friedmann, E.I. 1993. Terrestrial lithophytic (rock) communities. In Antarctic Microbiology, ed. E.I. Friedmann, pp. 343–412. Wiley-Liss, New York.Google Scholar
  54. Nienow, J.A., McKay, C.P., and Friedmann, E.I. 1988. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microb. Ecol. 16:271–289.PubMedCrossRefGoogle Scholar
  55. Quesada, A., Mouget, J., and Vincent, W.F. 1995. Growth of Antarctic cyanobacteria under ultraviolet radiation: UV-A counteracts UV-B inhibition. J . P hycol 31:242–248.Google Scholar
  56. Rettberg, P., Horneck, G., Strauch, W., Facius, R., and Seckmeyer, G. 1998. Simulation of planetary UV radiation climate on the example of the early Earth. Adv. Space Res. 22:335–339.CrossRefGoogle Scholar
  57. Rye, R., Kuo, P.H., and Holland, H.D. 1995. Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature (Lond.) 378:603–605.CrossRefGoogle Scholar
  58. Sagan, C. 1973. Ultraviolet radiation selection pressure on the earliest organisms. J. Theor. Biol. 39:195–200.PubMedCrossRefGoogle Scholar
  59. Sagan, C., and Chyba, C. 1997. The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221.PubMedCrossRefGoogle Scholar
  60. Sagan, C., and Khare, B.N. 1971. Long wave UV photoproducts of amino acids on the primitive Earth. Science 173:417.PubMedCrossRefGoogle Scholar
  61. Sagan, C., and Pollack, J.B. 1974. Differential transmission of sunlight on Mars: biological implications. Icarus 21:490–495.CrossRefGoogle Scholar
  62. Schopf, J.W., and Packer, B.M. 1987. Early archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73.PubMedCrossRefGoogle Scholar
  63. Tevini, M. 1993. UV-B radiation and ozone depletion. Effects on humans, animals, plants, micro-organisms and materials. Lewis, Boca Raton, FL.Google Scholar
  64. Vincent, W.F., Rae, R., Laurion, I., Howard-Williams, C., and Priscu, J.C. 1998. Transparency of antarctic ice-covered lakes to solar UV radiation. Limnol. Oceanogr. 43:618–624.CrossRefGoogle Scholar
  65. Walker, J.C.G. 1985. Carbon dioxide on the early Earth. Origins Life Evol. Biosph. 16: 117–127.CrossRefGoogle Scholar
  66. Walker, J.C., Klein, C., Schidlowski, M., Schopf, J.W., Stevenson, D.J., and Walter, M.R. 1983. Environmental evolution of the Archean-early Proterozoic Earth. In Earth’s Earliest Biosphere, ed. J.W. Schopf, pp. 260–290. Princeton University Press, Princeton.Google Scholar
  67. Zurek, R.W. 1992. Comparative aspects of the climate of Mars: an introduction to the current atmosphere. In Mars, eds. Kieffer, Jakosky B.M., Snyder, C. and Matthews, M.S. University of Arizona Press, Tucson.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Charles S. Cockell

There are no affiliations available

Personalised recommendations