Advertisement

Ultraviolet Radiation and the Antarctic Coastal Marine Ecosystem

  • Maria Vernet
  • Wendy Kozlowski
Chapter

Abstract

The Antarctic marine ecosystem is one of the largest ecosystems on the planet. It is bound by the Antarctic continent to the south and by the Polar Front to the north. Physical, chemical, and biological properties are distinct to this system both by their absolute value as well as by their scale of variability. For example, low and relatively constant temperatures are characteristic of surface marine waters (from —1.84° and 2.5°C) (Hofmann et al. 1996). In contrast, solar radiation presents a large seasonal variability that reaches an extreme of 24h of light in summer and 24h of darkness in winter, south of the Antarctic polar circle (66.5° S). Similarly, a strong seasonal variability in sea ice coverage reaches maximum values in winter (July and August) and minimum in the fall (March), sweeping approximately half the Antarctic marine ecosystem and effectively doubling the surface of the Antarctic continent. Atmospheric circulation, a driving force on air temperatures and sea ice distribution, includes several cyclonic pressure systems that surround the continent, introducing winds, cloudiness, moisture, and heat into the marine environment and coastal regions in a scale of days to weeks.

Keywords

Ultraviolet Radiation Antarctic Peninsula Ozone Depletion Antarctic Krill Euphausia Superba 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aráoz, R., Lebert, M. and Häder, D.-P. 1998. Translation activity under ultraviolet radiation and temperature stress in the cyanobacterium Nostoc sp. J. Photochem. Photobiol. B Biol. 47:115–120.CrossRefGoogle Scholar
  2. Behrenfeld, M.J., Hardy, J.T., and Lee, H. III. 1992. Chronic effects of ultraviolet-B radiation on growth and cell volume of Phaeodactylum tricornatum (Bacillariophyceae). J. Phycol. 28:757–760.CrossRefGoogle Scholar
  3. Bidigare, R.R., Iriarte, J.L., Kang, S.-H., Karentz, D., Ondrusek, M.E., and Fryxell, G.A. 1996. Phytoplankton: quantitative and qualitative assessments. In Foundations for Ecological Research West of the Antarctic Peninsula, eds. R.M. Ross, E.E. Hofmann, and L.B. Quetin, pp. 173–198. American Geophysical Union, Washington, DC.CrossRefGoogle Scholar
  4. Booth, C.R., Lucas, T.B., Morrow, J.H., Weiler, C.S., and Penhale, P.A. 1994. The United States National Science Foundation’s polar network for monitoring ultraviolet radiation. In Ultraviolet Radiation in Antarctica: Measurements and Biological effects, eds. C.S. Weiler and P.A. Penhale, pp. 17–37. American Geophysical Union, Washington DC.CrossRefGoogle Scholar
  5. Booth, C.R., Morrow, J.H., Coohill, T.P., Cullen, J.J., Frederick, J.E., Häder, D.-P., Holm-Hansen, O., Jeffrey, W.H., Mitchell, D.L., Neale, P.J., Sobolev, I., van der Luen, J., and Worrest, R.C. 1997. Impacts of solar UVR on aquatic microorganisms. Photobiochem. Photobiol. 65:252–269.CrossRefGoogle Scholar
  6. Bothwell, M.L., Sherbot, D., Roberge, A.C., and Daley, R.J. 1993. Influence of natural ultraviolet radiation on lotic periphytic diatom community growth, biomass accrual, and species composition: short-term versus long-term. J. Phycol. 29:24–35.CrossRefGoogle Scholar
  7. Boucher, N.P., and Prézelin, B.B. 1996a. An in situ biological weighting function for UV inhibition of phytoplankton carbon fixation in the Southern Ocean. Photobiochem. Photobiol. 63:407–418.CrossRefGoogle Scholar
  8. Boucher, N.P., and Prézelin, B.B. 1996b. Spectral modeling of UV inhibition of in situ Antarctic primary production using a field-derived biological weighting function. Mar. Ecol. Prog. Ser. 144:223–236.CrossRefGoogle Scholar
  9. Buma, A.G.J., Engelen, A.H., and Gieskes, W.W.C. 1997. Wavelength-dependent induction of thymine dimers and growth rate reduction in the marine diatom Cyclotella sp. exposed to ultraviolet radiation. Mar. Ecol. Prog. Ser. 153:91–97.CrossRefGoogle Scholar
  10. Cullen, J.J., and Lesser, M.P. 1991. Inhibition of photosynthesis by ultraviolet radiation as a function of dose and dosage rate: results for a marine diatom. Mar. Biol. 111:183–190.CrossRefGoogle Scholar
  11. Cullen, J.J., and Neale, P.J. 1994. Ultraviolet radiation, ozone depletion and marine photosynthesis. Photosynth. Res. 39:303–320.CrossRefGoogle Scholar
  12. Cullen, J.J., and Neale, P.J. 1997. Biological weighting functions for describing the effects of ultraviolet radiation on aquatic systems. In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D.-P Häder, pp. 97–118. Landes, Austin, TX.Google Scholar
  13. Cullen, J.J., Neale, P.J., and Lesser, M.P. 1992. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258:646–650.PubMedCrossRefGoogle Scholar
  14. Davidson, A.T., and Marchant, H.J. 1994. In Ultraviolet Radiation in Antarctic: Measurements and Biological Effects, eds. C.S. Weiler and P.A. Penhale, pp. 187–206. American Geophysical Union, Washington, DC.CrossRefGoogle Scholar
  15. Davidson, A.T., Bramich, D., Marchant, H.J., and McMinn, A. 1994. Effects of UV-B irradiation on growth and survival of Antarctic marine diatoms. Mar. Biol. 119:507–515.CrossRefGoogle Scholar
  16. Davidson, A.T., Marchant, H.J., and de la Mare, W.K. 1996. Natural UVB exposure changes the species composition of Antarctic phytoplankton in mixed culture. Aquat. Microb. Ecol. 10:299–305.CrossRefGoogle Scholar
  17. de Mora, S., Demers, S., and Vernet, M, eds. 2000. The Effects of UV Radiation in the Marine Environment. Cambridge University Press, Cambridge.Google Scholar
  18. Diaz, S.B., Morrow, J.H., and Booth, C.R. 2000. In The Effects of UV Radiation in the Marine Environment, eds. S. de Mora, S. Demers, and M. Vernet, pp. 34–71. Cambridge University Press, Cambridge.Google Scholar
  19. Döhler, G. 1985. Effect of UV-B radiation (290–320 nm) on the nitrogen metabolism on several marine diatoms. J. Plant Physiol. 118:391–400.PubMedCrossRefGoogle Scholar
  20. Döhler, G. 1997. Impact of UV radiation of different wavebands on pigments and assimilation of 15N-ammonium and 15N-nitrate by natural phytoplankton and ice algae in Antarctica. J. Plant Physiol. 151:550–555.CrossRefGoogle Scholar
  21. Ekelund, N.G.A. 1990. Effects of UV-B radiation on growth and motility of four phytoplankton species. Physiol. Plant. 78:590–594.CrossRefGoogle Scholar
  22. Ekelund, N.G.A. 1994. Influence of UV-B radiation on photosynthetic light-response curves, absorption spectra and motility of four phytoplankton species. Physiol. Plant. 91:696–702.CrossRefGoogle Scholar
  23. El-Sayed, S.Z. 1996. Historical perspective of research in the Antarctic Peninsula region. In Foundations for Ecological Research West of the Antarctic Peninsula, eds. R.M. Ross, E.E. Hofman, and L.B. Quetin, pp. 1–13. Antarctic Research Series, Vol. 70. American Geophysical Union, Washington D.C.CrossRefGoogle Scholar
  24. Farman, J.C., Gardiner, B.G., and Shanklin, J.D. 1985. Large losses of total ozone in Antarctica reveal seasonal chlorine oxide-nitrogen oxide interaction Nature (Lond.) 315:207–210.CrossRefGoogle Scholar
  25. Fiala, M., and Delille, D. 1992. Variability and interactions of phytoplankton and bacterioplankton in the Antarctic neritic area. Mar. Ecol. Prog. Ser. 89:35–146.CrossRefGoogle Scholar
  26. Folt, C.L., Chen, C.Y., Moore, M.V., and Burnaford, J. 1999. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44:864–877.CrossRefGoogle Scholar
  27. GarcIa-Pichel, F. 1994. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet screens. Limnol. Oceanogr. 39:704–1717.CrossRefGoogle Scholar
  28. Haberman, K.L. 1998. Feeding ecology of the Antarctic krill, Euphausia superba: the role of phytoplankton community composition in the krill’s diet. Ph.D. Thesis, University of California, Santa Barbara.Google Scholar
  29. Häder, D.P. 1997. The Effect of Ozone Depletion on Aquatic Ecosystems, pp. 275. R.E. Landes Co., Austin, TX.Google Scholar
  30. Hazzard, C., Lesser, M.P., Kinzie, R.A.I. 1997. Effects of ultraviolet radiation on photosynthesis in the sub-tropical marine DIATDM, Chaetoceros gracius (Bacillariphyceae). J. Phycol. 33:960–968.CrossRefGoogle Scholar
  31. Helbling, E.W., Villafañe, V.E., Ferrario, M.E., and Holm-Hansen, O. 1992. Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Mar. Ecol. Prog. Ser. 80:89–100.CrossRefGoogle Scholar
  32. Helbling, E.W., Villafañe, V.E., and Holm-Hansen, O. 1994. Effects of ultraviolet radiation on antrarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, eds. C.S. Weiler and P.A. Penhale, pp. 207–228. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  33. Helbling, E.W., Eilertsen, H.C., Villafañe, V.E., and Holm-Hansen, O. 1996. Effects of UV radiation in post-bloom phytoplankton populations in Kvalsund, North Norway. J. Photochem. Photobiol. 33:255–259.CrossRefGoogle Scholar
  34. Herndl, G.J., Muller-Niklas, G., and Frick, J. 1993. Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean. Nature (Lond.) 361: 717–719.CrossRefGoogle Scholar
  35. Hill, W.R., Dimick, S.M., McNamara, A.E., and Branson, C.A. 1997. No effects of ambient UV radiation detected in periphyton and grazers. Limnol. Oceanogr. 42:769–774.CrossRefGoogle Scholar
  36. Hofmann, E.E., Klinck, J.M., Lascara, C.M., and Smith, D.A. 1996. Water mass distribution and circulation west of the Antarctic Peninsula and including Bransfield Strait. In Foundations for Ecological Research West of the Antarctic Peninsula, eds. R.M. Ross, E.E. Hofmann, and L.B. Quetin, pp. 61–80. Antarctic Research Series, Vol. 70. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  37. Holm-Hansen, O., and Mitchell, B.G. 1991. Spatial and temporal distribution of phytoplankton and primary production in the western Bransfield Strait region. Deep-Sea Res. 38:961–980.CrossRefGoogle Scholar
  38. Holm-Hansen, O., Mitchell, B.G., and Vernet, M. 1989. Ultraviolet radiation in Antarctic waters: effect on rates of primary production. Ant. J. U. S. 24(5):177–178.Google Scholar
  39. Holm-Hansen, O., Helbling, E.W., and Lubin, D. 1993. Ultraviolet radiation in Antarctica: inhibition of primary production. Photobiochem. Photobiol. 58:567–570.CrossRefGoogle Scholar
  40. Holm-Hansen, O., Villafañe, V.E., and Helbling, E.W. 1997. Effects of solar ultraviolet radiation on primary production in Antarctic waters. In Antarctic Communities: Species, Structure and Survival, eds. B. Battaglia, J. Valencia, and D.W.H. Walton, pp. 375–380. Cambridge University Press, Cambridge.Google Scholar
  41. Jacka, T., and Budd, W. 1991. Detection of temperature and sea ice extent changes in the Antarctic and Southern Ocean. In International Conference on the Role of the Polar Regions in Global Change, June 11–15, 1990, eds. G. Weller, C. Wilson, and B. Severin, pp. 63–70. University of Alaska, Fairbanks.Google Scholar
  42. Jeffrey, W.H., Kase, J.P., and Wilhelm, S.W. 2000. UV radiation effects on heterotrophic bacterioplankton and viruses in marine ecosystems. In The Effects of UV Radiation in the Marine Environment, eds. S.J. de Mora, S. Demers, and M. Vernet, pp. 206–236. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  43. Karentz, D. 1994. Ultraviolet tolerance mechanisms in Antarctic marine organisms. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, eds. C.S. Weiler and P.A. Penhale, pp. 93–110. Antarctic Research Series 62. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  44. Karentz, D., and Lutze, L.H. 1990. Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments. Limnol. Oceanogr. 35:549–561.CrossRefGoogle Scholar
  45. Karentz, D., and Spero, H.J. 1995. Response of a natural Phaeocystis population to ambient fluctuations of UVB radiation caused by Antarctic ozone depletion. J. Plankton Res. 17:1771–1789.CrossRefGoogle Scholar
  46. Karentz, D., Cleaver, J.E., and Mitchell, D.L. 1991. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J. Phycol. 27:326–341.CrossRefGoogle Scholar
  47. Kelley, C.A., Pakulski, J.D., Sandvick, S.L.H., Coffin, R.B., Downer, R.C., Aas, P., Lyons, M.M., and Jeffrey, W.H. 1999. Phytoplanktonic and bacterial pools and productivities in the Gerlache Strait, Antarctica, during early austral spring. Microb. Ecol. 38:296–305.PubMedGoogle Scholar
  48. Kozlowski, W.A., Vernet, M., and Lamerdin, S.K. 1995. Predominance of cryptomonads and diatoms in Antarctic coastal waters. Ant. J. U.S. 30:267–268.Google Scholar
  49. Lange, H.J. de, Verschoor, A.M., Gylstra, R., Cuppen, J.G., and Donk, E. van. 1999. Effects of artificial ultravolet-B radiation on experimental aquatic microscosms. Freshw. Biol. 42:545–560.CrossRefGoogle Scholar
  50. Lesser, M.P. 1996. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41:271–283.CrossRefGoogle Scholar
  51. Lesser, M.P., Neale, P.J., and Cullen, J.J. 1996. Acclimation of Antarctic phytoplankton to ultraviolet radiation: ultraviolet-absorbing compounds and carbon fixation. Mol. Mar. Biol. Biotechnol. 5:314–325.Google Scholar
  52. Loeb, V., Siegel, V., Holm-Hansen, O., Hewitt, R., Fraser, W., Trivelpiece, W., and Trivelpiece, S. 1997. Effects of sea-ice extent and krill or salp dominance on the antarctic food web. Nature (Lond.) 387:897–900.CrossRefGoogle Scholar
  53. Lubin, D., and Frederick, J.E. 1991. The ultraviolet radiation environment of the Antarctic Peninsula: the roles of ozone and cloud cover. J. Appl. Meteorol. 30:478–493.CrossRefGoogle Scholar
  54. Lubin, D., Jensen, E.H., and Gies, H.P. 1998. Global surface ultraviolet radiation climatology from TOMS and ERBE data. J. Geophys. Res. 103(D20):26061–26091.CrossRefGoogle Scholar
  55. Malloy, K.D., Holman, M.A., Mitchell, D., and Detrich, H.W. 1997. Solar UVB-induced DNA damage and photoenzymatic DNA repair in antarctic zooplankton. Proc. Natl. Acad. Sci. USA 94:1258–1263.PubMedCrossRefGoogle Scholar
  56. Malone, T.C. 1980. Size-fractionated primary productivity of marine phytoplankton. In Primary Productivity in the Sea, ed. P. G. Falkowski, pp. 301–319. Plenum Press, New York.CrossRefGoogle Scholar
  57. Maske, H. 1984. Daylight ultraviolet radiation and the photoinhibition of phytoplankton carbon uptake. J. Plankton Res. 6:351–357.CrossRefGoogle Scholar
  58. Mitchell, D., and Karentz, D. 1993. The induction and repair of DNA photodamage in the environment. In Environmental UV Photobiology, eds. A.R. Young, L.O. Bjorn, J. Moan, and W. Nultsch, pp. 345–377. Plenum Press, New York.Google Scholar
  59. Moline, M.A., and Prézelin, B.B. 1996. Long-term monitoring and analyses of physical factors regulating variability in coastal Antarctic phytoplankton biomass, in situ productivity and taxonomic composition over subseasonal, seasonal and interannual time scales. Mar. Ecol. Prog. Ser. 145:143–160.CrossRefGoogle Scholar
  60. Mopper, K., and Kieber, J. 2000. Marine photochemistry and its impact on carbon cycling. In The Effects of UV Radiation in the Marine Environment, eds. S.J. De Mora, S. Demers, and M. Vernet, pp. 101–129. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  61. Mostajir, B., Demers, S., de Mora, S., Belzile, C., Chanut, J.-P., Gosselin, M., Roy, S., Villegas, P.Z., Fauchot, J., Buchard, J., Bird, D., Monfort, P., and Levasseur, M. 1999. Experimental test of the effect of ultraviolet-B radiation in a planktonic community. Limnol. Oceanogr. 44:586–596.CrossRefGoogle Scholar
  62. Naganobu, M., Kutsuwada, K., Sasai, Y., Taguchi, S., and Siegel, V. 1999. Relationships between Antarctic krill (Euphausia superba) variability and westerly fluctuations and ozone depletion in the Antarctic Peninsula area. J. Geophys. Res. 104:20651–20665.CrossRefGoogle Scholar
  63. Neale, P.J. 2000. Spectral weighting functions for quantifying effects of UV radiation in marine ecosystems. In The Effects of UV Radiation in the Marine Environment, eds. S.J. de Mora, S. Demers, and M. Vernet, pp. 72–100. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  64. Neale, P.J., Davis, R.F., and Cullen, J.J. 1998. Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature (Lond.) 392:585–589.CrossRefGoogle Scholar
  65. Newman, S.J., Nicol, S., Ritz, D., and Marchant, H. 1999. Susceptibility of Antarctic krill (Euphausia superba Dana) to ultraviolet radiation. Plant Biol. 22:50–55.Google Scholar
  66. Perovich, D.K. 1993. A theoretical model of ultraviolet light transmission through Antarctic sea ice. J. Geophys. Res. 98:22579–22587.CrossRefGoogle Scholar
  67. Prézelin, B.B., Boucher, N.P., and Schofield, O. 1994. Evaluation of field studies of UVB radiation effects on Antarctic marine primary production. In NATO ASI Series, pp. 181–194. NATO, Gainsville, FL, USA.Google Scholar
  68. Prézelin, B.B., Moline, M.A., and Matlick, H.A. 1998. Icecolors ′93: spectral UV radiation effects on antarctic frazil ice algae. In Antarctic Sea Ice. Biological Processes, Interactions and Variability, eds. M.P. Lizotte and K.R. Arrigo. Antarctic Research Series, Vol. 73. American Geophysical Union, Washington, D.C. pp. 45–83.CrossRefGoogle Scholar
  69. Quetin, L.B., Smith, R.C., Patterson, K., Ross, R.M., Wyatt-Evans, C., and Coe, H. 1998. Palmer LTER: effects of ultraviolet radiation on the behavior of larvae (E uphausia superba). N . Z . N at. S ci. 23(suppl):154.Google Scholar
  70. Rae, R., and Vincent, W.F. 1998. Effects of temperature and ultraviolet radiation on microbial food web structure: potential responses to global change. Freshw. Biol. 40: 747–758.CrossRefGoogle Scholar
  71. Raven, J.A. 1991. Responses of aquatic photosynthetic organisms to increased solar UVB. J. Photochem. Photobiol. 9:239–244.CrossRefGoogle Scholar
  72. Roos, J.C., and Vincent, W.F. 1988. Temperature dependence of UV radiation effects on antarctic cyanobacteria. J. Phycol. 34:118–125.CrossRefGoogle Scholar
  73. Roscoe, H.K., Jones, A.E., and Lee, A.M. 1997. Midwinter start to Antarctic ozone depletion: evidence from observations and models. Science 278:93–96.CrossRefGoogle Scholar
  74. Ross, R.M., Hofmann, E.E., and Quetin, L.B., eds. 1996. Foundations for Ecological Research West of the Antarctic Peninsula. Antarctic Research Series, Vol. 70. American Geophysical Union, Washington, D.C.Google Scholar
  75. Ross, R.M., Quetin, L.B., Baker, K., Vernet, M., and Smith, R.C. 2000. Growth limitation in young Euphausia superba under field conditions. Limnol. Oceanogr. 35:31–43.CrossRefGoogle Scholar
  76. Sabziparvar, A.A., Forster, P.M. de F., and Shine, K.P. 1998. Changes in ultraviolet radiation due to stratospheric and trophospheric ozone changes since preindustrial times. J. Geophys. Res. 103 (D20) : 26107–26 113.CrossRefGoogle Scholar
  77. Smith, R.C. 1989. Ozone, middle ultraviolet radiation and the aquatic environment. Photochem. Photobiol. 50(4):459–468.CrossRefGoogle Scholar
  78. Smith, R.C., and Cullen, J.J. 1995. Effects of UV radiation on phytoplankton. Rev. Geophys. 33:1211–1223.CrossRefGoogle Scholar
  79. Smith, R.C., and Stammerjohn, S.E. Variations of surface air temperature and sea ice extent in the Western Antarctic Peninsula. Annals of Glaciology (in press).Google Scholar
  80. Smith, R.C., Prézelin, B.B., Baker, K.S., Bidigare, R.R., Boucher, N.P., Coley, T., Karentz, D., Maclntyre, S., Matlick, H.A., Menzies, D., Ondrusek, M.E., Wan, Z., and Water, K.J. 1992. Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959.PubMedCrossRefGoogle Scholar
  81. Smith, R.C., Baker, K.S., Fraser, W.R., Hofmann, E.E., Karl, D.M., Klinck, J. M., Quetin, L.B., Prézelin, B.B., Ross, R.M., Trivelpiece, W.Z., and Vernet, M. 1995. The Palmer LTER: a long-term ecological research program at Palmer Station, Antarctica. Oceanography 8:77–86.CrossRefGoogle Scholar
  82. Smith, R.C., Stammerjohn, S.E., and Baker, K.S. 1996. Surface air temperature variations in the Western Antarctic Peninsula region. In Foundations for Ecological Research West of the Antarctic Peninsula, eds. R.M. Ross, E.E. Hofman, and L.B. Quetin, pp. 105–121. Antarctic Research Series, Vol. 70. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  83. Smith, R.C., Baker, K.S., and Vernet, M. 1998. Seasonal and interannual variability of phytoplankton biomass west of the Antarctic Penninsula. J. Mar. Syst. 17:229–243.CrossRefGoogle Scholar
  84. Smith, R.C., Ainley, D., Baker, K.S., Domack, E., Emslie, S., Fraser, W., Kennett, J., Leventer, A., Mosley-Thompson, E., Stammerjohn, S.E., and Vernet, M. 1999. Marine ecosystem sensitivity to climate change. Bio-Science 49:393–404.Google Scholar
  85. Smith, W.O., and Nelson, D.M. 1986. Importance of ice edge phytoplankton production in the Southern Ocean. Bio-Science 36:251–257.Google Scholar
  86. Solomon, S. 1988. The mystery of the Antarctic ozone hole. Rev. Geophys. 26:131–148.CrossRefGoogle Scholar
  87. Stammerjohn, S.S., and Smith, R.C. 1996. Spatial and temporal variability of Western Antarctic Peninsula sea ice coverage. In Foundations for Ecological Research West of the Antarctic Peninsula, eds. R.M. Ross, E.E. Hofman, and L.B. Quetin, pp. 81–104. Antarctic Research Series, Vol. 70. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  88. Steeman-Nielsen, E. 1964. On a complication in marine productivity work due to the influence of ultraviolet light J. Cons. Int. Explor. Mer. 29:130–135.Google Scholar
  89. Taalas, P., Kaurola, J., Kylling, A., Shindell, D., Sausen, R., Dameris, M., Grewe, V., Herman, J., Damski, J., and Steil, B. 2000. The impact of greenhouse gases and halogenated species on future solar UV radiation doses. Geophys. Res. Leu. 27:1127–1130.CrossRefGoogle Scholar
  90. Tang, E.P.Y., Tremblay, R., and Vincent, W.F. 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J. Phycol. 33:171–181.CrossRefGoogle Scholar
  91. Tréguer, P., and Jacques, G. 1992. Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean. Polar Biol. 12:149–162.CrossRefGoogle Scholar
  92. van Loon, H. 1967. The half-yearly oscillations in middle and high southern latitudes and the coreless winter. J. Atmos. Sci. 24:472–483.CrossRefGoogle Scholar
  93. Veen, A., Reuvers, M., and Ronçak, P. 1997. Effects of acute and chronic UV-B exposure on a green alga: a continuous culture study using a computer-controlled dynamic light regime. Plant Ecol. 128:29–40.CrossRefGoogle Scholar
  94. Vernet, M. 2000. Effects of UV radiation on the physiology and ecology of marine phytoplankton. In The Effects of UV Radiation in the Marine Environment, eds. S. de Mora, S. Demers, and M. Vernet, pp. 279–309. Cambridge University Press, Cambridge.Google Scholar
  95. Vernet, M., and Smith, R.C. 1997. In The Effect of Ozone Depletion on Aquatic Ecosystems, ed. D.-P. Hader, pp. 247–265. Landes, Austin, TX.Google Scholar
  96. Vernet, M., Brody, E.A., Holm-Hansen, O., and Mitchell, B.G. 1994. The response of Antarctic phytoplankton to ultraviolet light: absorption, photosynthesis and taxonomic composition. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, eds. C.S. Weiler and P.A. Penhale, pp. 143–158. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  97. Villafañe, V.E., Helbling, E.W., Holm-Hansen, O., and Chalker, B.E. 1995a. Acclimatization of Antarctic natural phytoplankton assemblages when exposed to solar ultraviolet radiation. J. Plankton Res. 17:2295–2306.CrossRefGoogle Scholar
  98. Villafañe, V.E., Helbling, E.W., Holm-Hansen, O., and Diaz, H.F. 1995b. Long-term responses by Antarctic phytoplankton to solar ultraviolet radiation. Ant. J. U.S. 30:320–323.Google Scholar
  99. Vincent, W.F., and Neale, P.J. 2000. Mechanisms of UV damage to aquatic organisms. In The Effects of UV Radiation in the Marine Environment, eds. S. de Mora, S. Demers, and M. Vernet, pp. 149–176. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  100. Vincent, W.F., and Roy, S. 1993. Solar ultraviolet-B radiation and aquatic primary production: damage, protection and recovery. Environ. Rev. 1:1–12.CrossRefGoogle Scholar
  101. Weiler, C.S., and Penhale, P.A. 1994. Ultraviolet Radiation in Antarctica: Measurements and Biological Effects. American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  102. Wickman, S., and Carstens, M. 1998. Effects of ultraviolet-B radiation in two arctic microbial food webs. Aquat. Microb. Ecol. 16:163–171.CrossRefGoogle Scholar
  103. Williamson, C.E., Hargreaves, R.H., Orr, P.S., and Lovera, P.A. 1999. Does UV play a role in changes in predation and zooplankton community structure in acidified lakes? Limnol. Oceanogr. 44:774–783.CrossRefGoogle Scholar
  104. Worrest, R.C., Wolniakowski, K.U., Scott, J.D., Brooker, D.L., Thomson, B.E., and Van Dyke, H. 1981. Sensitivity of marine phytoplankton to UV-B radiation: impact upon a model ecosystem. Photochem. Photobiol. 33:223–227.CrossRefGoogle Scholar
  105. Zagarese, H.E., and Williamson, C.E. 2000. Impact of solar UV radiation on zooplankton and fish. In The Effects of UV Radiation in the Marine Environment, eds. S. de Mora, S. Demers, and M. Vernet, pp. 279–309. Cambridge University Press, Cambridge.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Maria Vernet
  • Wendy Kozlowski

There are no affiliations available

Personalised recommendations