Advertisement

Ultraviolet Radiation and Aquatic Microbial Ecosystems

  • Donat-P. Häder
Chapter

Abstract

Solar ultraviolet radiation is easily blocked by high concentrations of dissolved and particulate organic matter, but it has been found to penetrate to ecologically significant depths in clear freshwater and marine ecosystems (USEPA 1987; Smith et al. 1992; Scully and Lean 1994; Häder 1995a; Booth et al. 1997; Coohill, Häder and Mitchell 1996). The Antarctic ozone hole has continued to grow in size and depth, and measurements during the past few years have shown dramatic stratospheric ozone depletion also over the North Pole. At high and midlatitudes, moderate decreases in total ozone column have been found with resulting increases in erythemally weighted surface UV radiation of about 7% over the midlatitudes of the Northern Hemisphere in winter and spring and about 4% in summer and fall as compared with the values of 1970. For the Southern Hemisphere midlatitudes, an erythemally weighted increase in surface solar UV of about 6% has been determined on a year-round basis (Madronich et al. 1998).

Keywords

Aquatic Ecosystem Ultraviolet Radiation Ozone Depletion Total Ozone Column Solar Ultraviolet Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aráoz, R., and Häder, D.-P. 1997. Ultraviolet radiation induces both degradation and synthesis of phycobilisomes in Nostoc sp.: a spectroscopic and biochemical approach. FEMS Microbiol. Ecol. 23:301–313.CrossRefGoogle Scholar
  2. Arrigo, K.R. 1994. Impact of ozone depletion on phytoplankton growth in the Southern Ocean: large-scale spatial and temporal variability. Mar. Ecol. Prog. Ser. 114:1–12.CrossRefGoogle Scholar
  3. Banerjee, M., and Häder, D.-P. 1996. Effects of UV radiation on the rice field cyanobacterium, Aulosira fertilissima. Environ. Exp. Bot. 36:281–291.CrossRefGoogle Scholar
  4. Beach, K.S., and Smith, C.M. 1996a. Ecophysiology of tropical rhodophytes. I. Microscale acclimation in pigmentation. J. Phycol. 32:701–710.CrossRefGoogle Scholar
  5. Beach, K.S., and Smith, C.M. 1996b. Ecophysiology of tropical rhodophytes. II. Microscale acclimation in photosynthesis. J. Phycol. 32:710–718.CrossRefGoogle Scholar
  6. Behrenfeld, M.J. 1995. Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic plankton. J. Phycol. 31:25–36.CrossRefGoogle Scholar
  7. Behrenfeld, M.J., and Falkowski, P.G. 1997a. Photosynthetic rates derived from satellitebased chlorophyll concentration. Limnol. Oceanogr. 42:1–20.CrossRefGoogle Scholar
  8. Behrenfeld, M.J., and Falkowski, P.G. 1997b. A consumer’s guide to phytoplankton primary productivity models. Limnol. Oceanogr. 42:1479–1491.CrossRefGoogle Scholar
  9. Behrenfeld, M.J., Lee H. II, and Small, L.F. 1994. Interactions between nutritional status and long-term responses to ultraviolet-B radiation stress in a marine diatom. Mar. Biol. 118:523–530.CrossRefGoogle Scholar
  10. Biggs, B.J.F. 1996. Patterns in benthic algae of streams. In Algal Ecology, ed. R.J. Stevenson, pp. 31–56. Academic Press, San Diego, CA, USA.CrossRefGoogle Scholar
  11. Björn, L.O., Cunningham, A., Dubinsky, Z., Estrada, M., Figueroa, F.L., Garcia-Pichel, F., Häder, D.-P., Hanelt, D., Levavasseur, G., and Lüning, K. 1996. Technical discussion. I: Underwater light measurements and light absorption by algae. In Underwater Light and Algal Photobiology, eds. F.L. Figueroa, C. Jiménez, J.L. Pérez-Lloréns, and F.X. Niell. Sci. Mar. 60 (suppl. 1):59–63.Google Scholar
  12. Booth, C.R., Morrow, J.H., Coohill, T.P., Frederick, J.E., Häder, D.-P., Holm-Hansen, O., Jeffrey, W.H., Mitchell, D.L., Neale, P.J., Sobolev, I., van der Leun, J., and Worrest, R.C. 1997. Impacts of solar UVR on aquatic microorganisms. Photochem. Photobiol. 65:252–269.CrossRefGoogle Scholar
  13. Bothwell, M.L., Sherbot, D.M.J., and Pollock, C.M. 1994. Ecosystem response to solar ultraviolet-B radiation: influence of trophic level interactions. Science 256:97–100.CrossRefGoogle Scholar
  14. Boucher, N.P., and Prezelin, B.B. 1996. An in situ biological weighting function for UV inhibition of phytoplankton carbon fixation in the Southern Ocean. Mar. Ecol. Prog. Ser. 114:223–236.CrossRefGoogle Scholar
  15. Brown, C.W., Esaias, W.E., and Thompson, A.M. 1995. Predicting phytoplankton cornposition from space-using the ratio of euphotic depth to mixed-layer depth: an evaluation. Remote Sens. Environ. 53:172–176.CrossRefGoogle Scholar
  16. Burna, A.G.J., van Hannen, E.J., Roza, L., Veldhuis, M.J.W., and Gieskes, W.W.C. 1995. Monitoring ultraviolet-B-induced DNA damage in individual diatom cells by immunofluorescent thymine dirner detection. J. Phycol. 51:314–321.Google Scholar
  17. Buma, A.G.J., Zemmelink, H.J., Sjollema, K., and Gieskes, W.W.C. 1996a. UVB radiation modifies protein and photosynthetic pigment content, volume and ultrastructure of marine diatoms. Mar. Ecol. Progr. Ser. 147:47–54.CrossRefGoogle Scholar
  18. Buma, A.G.J., van Hannen, E.J., Veldhuis, M.J.W., and Gieskes, W.W.C. 1996b. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotellasp. Sci. Mar. 60(suppl. 1):101–106.Google Scholar
  19. Buma, A.G.J., Engelen, A.H., and Gieskes, W.W.C. 1997. Wavelength-dependent induction of thymine dimers and growth rate reduction in the marine diatom Cyclotella sp. exposed to ultraviolet radiation. Mar. Ecol. Progr. Ser. 153:91–97.CrossRefGoogle Scholar
  20. Burenkov, V.I. 1993. Optical properties of the Laptev Sea near the Lena River delta. In Proceedings of Symposium on High Latitude Optics, Tromso, Norway, 28 June-2 July 1993.Google Scholar
  21. Coohill, T.P., Häder, D.-P., and Mitchell, D.L. 1996. Environmental ultraviolet photobiology: introduction. Photochem. Photobiol. 64:401–402.CrossRefGoogle Scholar
  22. Cullen, J.J., and Neale, P.J. 1994. Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynth. Res. 39:303–320.CrossRefGoogle Scholar
  23. Cullen, J.J., and Neale, P.J. 1997a. Biological weighting functions for describing the effects of ultraviolet radiation on aquatic systems. In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D-P. Häder, pp. 97–118. Academic Press and Landes, Austin, TX.Google Scholar
  24. Cullen, J.J., and Neale, P.J. 1997b. Effects of ultraviolet radiation on short-term photosynthesis of natural phytoplankton. Photochem. Photobiol. 65:264–266.CrossRefGoogle Scholar
  25. Davidson, A.T., Marchant, H.J., and de la Mare, W.K. 1996. Natural UV exposure changes the species composition of Antarctic phytoplankton in mixed culture. Aquat. Microb. Ecol. 10:299–305.CrossRefGoogle Scholar
  26. Döhler, G. 1992. Impact of UV-B radiation (290–320 nm) on uptake of 15N-ammonia and 15N-nitrate by phytoplankton of the Wadden Sea. Mar. Biol. 112:485–489.CrossRefGoogle Scholar
  27. Döhler, G. 1996. Effect of UV irradiance on utilization of inorganic nitrogen by the Antarctic diatom Odontella weissflogii (Janisch) Grunow. Bot. Acta 109:35–42.Google Scholar
  28. Döhler, G. 1997. Impact of UV radiation of different wavebands on pigments and assimilation of 15N-ammonium and 15N-nitrate by natural phytoplankton and ice algae in Antarctica. J. Plant Physiol. 151:550–555.CrossRefGoogle Scholar
  29. Döhler, G., and Hagmeier, E. 1997. UV effects on pigments and assimilation of 15Nammonium and 15N-nitrate by natural marine phytoplankton of the North Sea. Bot. Acta 110:481–488.Google Scholar
  30. Donkor, V.A., and Häder, D.-P. 1995. Protective strategies of several cyanobacteria against solar radiation. J. Plant Physiol. 145:750–755.CrossRefGoogle Scholar
  31. Donkor, V.A., and Häder, D.-P. 1996. Effects of ultraviolet irradiation on photosynthetic pigments in some filamentous cyanobacteria. Aquat. Microb. Ecol. 11:143–149.CrossRefGoogle Scholar
  32. Donkor, V.A., and Häder, D.-P. 1997. Ultraviolet radiation effects on pigmentation in the cyanobacterium Phormidium uncinatum. Acta Protozool. 36:49–55.Google Scholar
  33. Ducklow, H.W., Carlson, C.A., Bates, N.R., Knap, A.H., and Michaels, A.F. 1995. Dissolved organic carbon as a component of the biological pump in the North Atlantic Ocean. Philos. Trans. R. Soc. Lond. B Biol. Sci. 348:161–167.CrossRefGoogle Scholar
  34. Dunlap, W.C., and Shick, J.M. 1998. Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J. Phycol. 34:418–430.CrossRefGoogle Scholar
  35. Figueroa, F.L., Jiménez, C., Pérez-Lloréns, J.L., and Niell, F.X. 1996. Underwater light and algal photobiology. Sci. Mar. 60(suppl 1): 343.Google Scholar
  36. Figueroa, F.L., Jiménez, C., Lubián, L.M., Montero, O., Lebert, M., and Häder, D.-P. 1997. Effects of high irradiance and temperature on photosynthesis and photoinhibition in Nannochloropsis gaditana Lubián (Eustigmatophyceae). J. Plant Physiol. 151:6–15.CrossRefGoogle Scholar
  37. Franklin, L.A., and Forster, R.M. 1997. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur. J. Phycol. 32:207–232.Google Scholar
  38. Fuhrman, J.A., and Noble, R.T. 1995. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol. Oceanogr. 40:1236–1242.CrossRefGoogle Scholar
  39. Garcia-Pichel, F. 1994. A model for the internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol. Oceanogr. 39: 1704–1717.CrossRefGoogle Scholar
  40. Gerber, S., and Häder, D.-P. 1995a. Effects of enhanced solar irradiance on chlorophyll fluorescence and photosynthetic oxygen production of five species of phytoplankton. FEMS Microbiol. Ecol. 16:33–42.CrossRefGoogle Scholar
  41. Gerber, S., and Häder, D.-P. 1995b. Effects of artificial and simulated solar radiation on the flagellate Euglena gracilis: physiological, spectroscopical and biochemical investigations. Acta Protozool. 34:13–20.Google Scholar
  42. Gerber, S., Biggs, A., and Häder, D.-P. 1996. A polychromatic action spectrum for the inhibition of motility in the flagellate Euglena gracilis. Acta Protozool. 35:161–165.Google Scholar
  43. Giacometti, G.M., Barbato, R., Chiaramonte, S., Friso, G., and Rigoni, F. 1996. Effects of ultraviolet-B radiation on photosystem II of the cyanobacterium Synechocystis sp. PCC 6083. Eur. J. Biochem. 242:799–806.PubMedCrossRefGoogle Scholar
  44. Gieskes, W.W.C., and Buma, A.G.J. 1997. UV damage to plant life in a photobiologically dynamic environment: the case of marine phytoplankton. Plant Ecol. 128:16–25.CrossRefGoogle Scholar
  45. Gleason, D.F., and Wellington, G.M. 1995. Variation in UVB sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar. Biol. 123:693–703.CrossRefGoogle Scholar
  46. Häder, D.-P. 1995a. Photo-ecology and environmental photobiology. In CRC Handbook of Organic Photochemistry and Photobiology, eds. W.M. Horspool, and P.-S. Song, pp. 1392–1401. CRC Press, Boca Raton.Google Scholar
  47. Häder, D.-P. 1997a. Effects of UV radiation on phytoplankton. In Advances in Microbial Ecology, Vol. 15., ed. J.G. Jones, pp. 1–26. Plenum Press, New York.Google Scholar
  48. Häder, D.-P. 1997b. Effects of solar UV-B radiation on aquatic ecosystems. In Plants and UV B: Responses to Environmental Change, ed. P.J. Lumsden, pp. 171–193. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  49. Häder, D.-P. 1997c. UV-B and aquatic ecosystems. In UV-B and Biosphere, eds. J. Rozema, W.W.C. Gieskes, S.C. van de Geijn, C. Nolan, and H. de Boois, pp. 4–13. Kluwer, Dordrecht.CrossRefGoogle Scholar
  50. Häder, D.-P. 1997d. Stratospheric ozone depletion and increase in ultraviolet radiation. In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D.-P. Häder, pp. 1–4. Academic Press and Landes, Austin, TX.Google Scholar
  51. Häder, D.-P., and Figueroa, F.L. 1997. Photoecophysiology of marine macroalgae. Photochem. Photobiol. 66:1–14.CrossRefGoogle Scholar
  52. Häder, D.-P., and Worrest, R.C. 1997. Consequences of the effects of increased solar ultraviolet radiation on aquatic ecosystems. In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D.-P. Häder, pp. 11–30. Academic Press and Landes, Austin, TX.Google Scholar
  53. Häder, D.-P., Worrest, R.C., Kumar, H.D., and Smith, R.C. 1995. Effects of increased solar ultraviolet radiation on aquatic ecosystems. Ambio 24:174–180.Google Scholar
  54. Häder, D.-P., Worrest, R.C., Kumar, H.D., Smith, R.C. 1998. Effects of UV radiation on aquatic ecosystems. J. Photochem. Photobiol. 46:53–68.CrossRefGoogle Scholar
  55. Häder, M., and Häder, D.-P. 1997. Optical properties and phytoplankton composition in a freshwater ecosystem (Main-Donau-Canal). In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D.-P. Häder, pp. 155–174. Academic Press and Landes, Austin, TX.Google Scholar
  56. Häder, D.-P., Lebert, M., Maragoni, R., and Colombetti, G. Eldonet-European Light Dosimeter Network: hardware and software. J. Photochem. Photobiol. B Biol. 52:51–58.Google Scholar
  57. Halac, S., Felip, M., Camarero, L., Sommaruga-Wögrath, S., Psenner, R., Catalan, J., and Sommaragu, R. 1997. An in situ enclosure experiment to test the solar UVB impact on plankton in a high-altitude mountain lake. I. Lack of effect on phytoplankton species composition and growth. J. Plankton Res. 19:1671–1686.CrossRefGoogle Scholar
  58. Helbling, E.B., Chalker, B.E., Dunlap, W.C., Holm-Hansen, O., and Villafane, V.E. 1996. Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiation. J. Exp. Mar. Biol. Ecol. 204:85–101.CrossRefGoogle Scholar
  59. Helbling, E.W., Villafane, V., and Holm-Hansen, O. 1994. Effects of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, eds. C.S. Weiler and P.A. Penhale, pp. 207–227. Antarctic Research Series 62. American Geophysical Union, Washington, DC.CrossRefGoogle Scholar
  60. Herndl, G.J. 1997. Role of ultraviolet radiation on bacterioplankton activity. In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D.-P. Häder, pp. 143–154. Academic Press and Landes, Austin, TX.Google Scholar
  61. Herrmann, H., Häder, D.-P., Köfferlein, M., Seidlitz, H.K., and Ghetti, F. 1996. Effects of UV radiation on photosynthesis of phytoplankton exposed to solar simulator light. J. Photochem. Photobiol. B Biol. 34:21–28.CrossRefGoogle Scholar
  62. Herrmann, H., Häder, D.-P., and Ghetti, F. 1997. Inhibition of photosynthesis by solar radiation in Dunaliella salina: relative efficiencies of UV-B, UV-A and PAR. Plant Cell Environ. 20:359–365.CrossRefGoogle Scholar
  63. Holm-Hansen, O. 1997. Short- and long-term effects of UVA and UVB on marine phytoplankton productivity. Photochem. Photobiol. 65:266–268.CrossRefGoogle Scholar
  64. IASC. 1995. Effects of increased ultraviolet radiation in the Arctic. IASC Report No. 2, IASC Secretariat. J. Plant Physiol. 148:42–48.Google Scholar
  65. Jeffrey, W.H., Aas, P., Maille Lyons, M., Coffin, R.B., Pledger, R.J., and Mitchell, D.L. 1996a. Ambient solar radiation-induced photodamage in marine bacterioplankton. Photochem. Photobiol. 64:419–427.CrossRefGoogle Scholar
  66. Jeffrey, W.H., Pledger, R.J., Aas, P., Hager, S., Coffin, R.B., Haven, R.V., and Mitchell, D.L. 1996b. Diel and depth profiles of DNA photodamage in bacterioplankton exposed to ambient solar ultraviolet radiation. Mar. Ecol. Prog. Ser. 137:283–291.CrossRefGoogle Scholar
  67. Jerlov, N.G. 1968. Optical Oceanography. Elsevier, Amsterdam.Google Scholar
  68. Jiménez, C., Figueroa, F.L., Aguilera, J., Lebert, M., and Häder, D.-P. 1996. Phototaxis and gravitaxis in Dunaliella bardawil: influence of UV radiation. Acta Protozool. 35:287–295.Google Scholar
  69. Karentz, D., and Spero, H.J. 1995. Response of a natural Phaeocystis population to ambient fluctuations of UVB radiation caused by Antarctic ozone depletion. J. Plankton Res. 17:1771–1789.CrossRefGoogle Scholar
  70. Karentz, D., Bothwell, M.L., Coffin, R.B., Hanson, A., Herndl, G.J., Kilham, S.S., Lesser, M.P., Lindell, M., Moeller, R.E., Morris, D.P., Neale, P.J., Sanders, R.W., Weiler, C.S., and Wetzel, R.G. 1994. Report of working group on bacteria and phytoplankton. In Impact of UV-B Radiation on Pelagic Freshwater Ecosystems, eds. C.E. Williamson, and H.E. Zagarese. Arch. Hydrobiol. 43(special issue): 31–69.Google Scholar
  71. Karsten, U., and Garcia-Pichel, F. 1996. Carotenoids and mycosporine-like amino acid compounds in members of the genus Microcoleus (cyanobacteria): a chemosystematic study. Syst. Appl. Microbiol. 19:285–294.CrossRefGoogle Scholar
  72. Kashyap, A.K., Pandey, K.D., and Gupta, R.K. 1991. Nitrogenase activity of the Antarctic cyanobacterium Nostoc commune: influence of temperature. Folia Microbiol. 36: 557–560.CrossRefGoogle Scholar
  73. Kim, D.S., and Watanabe, Y. 1994. Inhibition of growth and photosynthesis of freshwater phytoplankton by ultraviolet A (UVA) radiation and subsequent recovery from stress. J. Plankton Res. 16:1645–1654.CrossRefGoogle Scholar
  74. Kirst, G.O., and Wiencke, C. 1996. Ecophysiology of algae. J. Phycol. 31:181–199.CrossRefGoogle Scholar
  75. Kumar, A., Sinha, R.P., and Häder, D.-P. 1996. Effect of UV-B on enzymes of nitrogen metabolism in the cyanobacteria Nostoc calcicola. J. Plant Physiol. 148:86–91.CrossRefGoogle Scholar
  76. Lesser, M. 1996. Acclimation of phytoplankton to UV-B radiation: oxidative stress and photoinhibition of photosynthesis are not prevented by UV-absorbing compounds in the dinoflagellate Prorocentrum micans. Mar. Ecol. Prog. Ser. 132:287–297. (Correction: Mar. Ecol. Progr. Ser. 141:312.)Google Scholar
  77. Lüning, K. 1990. Seaweeds. Their Environment, Biogeography and Ecophysiology. Wiley, New York.Google Scholar
  78. Madronich, S., McKenzie, R.L., Björn, L.O., and Caldwell, M.M. 1998. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. UNEP Environmental Effects Panel Report, pp. 5–19. United Nations, New York.Google Scholar
  79. Markager, S., and Sand-Jensen, K. 1994. The physiology and ecology of light-grown relationship in macroalgae. In Progress in Phycological Research, Vol. 10, eds. F.E. Round and D.J. Chapman, pp. 209–298. Biopress, Bristol.Google Scholar
  80. Milot-Roy, V., and Vincent, W.F. 1994. UV radiation effects on photosynthesis: the importance of near-surface thermoclines in a subarctic lake. In Advances in Limnology: Impact of UV-B radiation on Pelagic Ecosystems, eds. C.E. Williamson, and H.E. Zagarese. Arch. Hydrobiol. 43:171–184.Google Scholar
  81. Montecino, V., and Pizarro, G. 1995. Phytoplankton acclimation and spectral penetration of UV irradiance off the central Chilean coast. Mar. Ecol. Prog. Ser. 121:261–269.CrossRefGoogle Scholar
  82. Morrow, J.H., and Booth, C.R. 1997. Instrumentation and methodology for ultraviolet readiation measurements in aquatic environments. In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D.-P. Häder, pp. 31–44. Academic Press and Landes, Austin, TX.Google Scholar
  83. Müller-Niklas, G., Heissenberger, A., Puskaric, S., and Herndl, G.J. 1995. Ultraviolet-B radiation and bacterial metabolism in coastal waters. Aquat. Microb. Ecol. 9:111–116.CrossRefGoogle Scholar
  84. Naganuma, T., Konishi, S., Inoue, T., Nakane, T., and Sukizaki, S. 1996. Photodegradation or photoalteration? Microbial assay of the effect of UV-B on dissolved organic matter. Mar. Ecol. Prog. Ser. 135:309–310.CrossRefGoogle Scholar
  85. Neale, P.J., Cullen, J.J., and Davis, R.F. 1998. Inhibition of marine photosynthesis by ultraviolet radiation: variable sensitivity of phytoplankton in the Weddell-Scotia Sea during austral spring. Limnol. Oceanogr. 43:433–488.CrossRefGoogle Scholar
  86. Neale, P.J., Davis, R.F., and Cullen, J.J. 1998. Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature (Lond.) 392:585–589.CrossRefGoogle Scholar
  87. Nicholson, W.L. 1995. Photoreactivation in the genus Bacillus. Curr. Microbiol. 31: 361–365.CrossRefGoogle Scholar
  88. Nolan, C.V., and Amanatidis, G.T. 1995. European Commission research on the fluxes and effects of environmental UVB radiation. J. Photochem. Photobiol. B Biol. 31: 3–7.CrossRefGoogle Scholar
  89. Peletier, H., Gieskes, W.W.C., and Buma, A.G.J. 1996. Ultraviolet-B radiation resistance of benthic diatoms isolated from tidal flats in the Dutch Wadden Sea. Mar. Ecol. Prog. Ser. 135:163–168.CrossRefGoogle Scholar
  90. Piazena, H., and Häder, D.-P. 1997. Penetration of solar UV and PAR into different waters of the Baltic Sea and remote sensing of phytoplankton. In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D.-P. Häder, pp. 45–96. Academic Press and Landes, Austin, TX.Google Scholar
  91. Pomeroy, L.R., and Wiebe, W.J. 1988. Energetics of microbial food webs. Hydrobiologia 159:7–18.CrossRefGoogle Scholar
  92. Porst, M., Herrmann, H., Schäfer, J., Santas, R., and Häder, D.-P. 1997. Photoinhibition in the Mediterranean green alga Acetabularia mediterranea measured in the field under solar irradiation. J. Plant Physiol. 151:25–32.CrossRefGoogle Scholar
  93. Quesada, A. 1995. Growth of Antarctica cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition. J . P hycol. 31:242–248.Google Scholar
  94. Rai, L.C., Tyagi, B., and Mallick, N. 1996. Alternation in photosynthetic characteristics of Anabaena dolium following exposure to UV-B and Pb. Photochem. Photobiol. 64:658–663.CrossRefGoogle Scholar
  95. Rai, P.K., and Rai, L.C. 1997. Interactive effects of UV-B and Cu on photosynthesis, uptake and metabolism of nutrients in green alga Chlorella vulgaris and simulated ozone column. J. Gen. Appl. Microbiol. 43:281–288.PubMedCrossRefGoogle Scholar
  96. Santas, R., Häder, D.-P., and Lianou, C. 1996. Effects of solar UV radiation on diatom assemblages of the Mediterranean. Photochem. Photobiol. 64:435–439.CrossRefGoogle Scholar
  97. Santas, R., Koussoulaki, A., and Häder, D.-P. 1997. In assessing biological UV-B effects, natural fluctuations of solar radiation should be taken into account. Plant Ecol. 128: 93–97.CrossRefGoogle Scholar
  98. Sarmiento, J.L., and Le Quéré, C. 1996. Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274:1346–1350.PubMedCrossRefGoogle Scholar
  99. Scheuerlein, R., Treml, S., Thar, B., Tirlapur, U.K., and Häder, D.-P. 1995. Evidence for UV-B-induced DNA degradation in Euglena gracilis mediated by activation of metaldependent nucleases. J. Photochem. Photobiol. B Biol. 31:113–123.CrossRefGoogle Scholar
  100. Scully, N.M., and Lean, D.R.S. 1994. The attenuation of ultraviolet radiation in temperate lakes. In Advances in Limnology: Impact of UV-B Radiation on Pelagic Ecosystems, eds. C.E. Williamson and H.E. Zagarese. Arch. Hydrobiol. 43:135–144.Google Scholar
  101. Shick, J.M., Lesser, M.P., and Jokiel, P.L. 1996. Effects of ultraviolet radiation on corals and other coral reef organisms. Global Change Biol. 2:527–545.CrossRefGoogle Scholar
  102. Sinha, R.P., and Häder, D.-P. 1997. Impacts of UV-B irradiation on rice-field cyanobacteria. In The Effects of Ozone Depletion on Aquatic Ecosystems. ed. D.-P. Häder, pp. 189–198. Academic Press and Landes, Austin, TX.Google Scholar
  103. Sinha, R.P., Kumar, H.D., Kumar, A., and Häder, D.-P. 1995. Effects of UV-B irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in cyanobacteria. Acta Protozool. 34:187–192.Google Scholar
  104. Sinha, R.P., Singh, N., Kumar, A., Kumar, H.D., Häder, M., and Häder, D.-P. 1996. Effects of UV irradiation on certain physiological and biochemical processes in cyanobacteria. J. Photochem. Photobiol. B Biol. 32:107–113.CrossRefGoogle Scholar
  105. Smith, R.C., Prézelin, B.B., Baker, K.S., Bidigare, R.R., Boucher, N.P., Coley, T., Karentz, D., Maclntyre, S., Matlick, H.A., Menzies, D., Ondrusek, M., Wan, Z., and Waters, K.J. 1992. Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959.PubMedCrossRefGoogle Scholar
  106. Smith, R.C., Baker, K.S., Byers, M.L., and Stammerjohn, S.E. 1998. Primary productivity of the Palmer Long-Term Ecological Research Area and the Southern Ocean. J. Marine Systems 17:245–259.CrossRefGoogle Scholar
  107. Sommaruga, R., and Robarts, R.D. 1997. The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbiol. Ecol. 24:187–200.CrossRefGoogle Scholar
  108. Sommaruga, R., Oberleiter, A., and Psenner, R. 1996. Effect of UV radiation on the bacterivory of a heterotrophic nanoflagellate. Appl. Environ. Microbiol. 62:4395–4400.PubMedGoogle Scholar
  109. Springer, A.M., and McRoy, C.P. 1993. The paradox of pelagic food webs in the northern Bering Sea. III. Patterns of primary production. Continent. Shelf Res. 13:575–599.CrossRefGoogle Scholar
  110. Sullivan, C.W., Arrigo, K.R., McClain, C.R., Comiso, J.C., and Firestone, J. 1993. Distributions of phytoplankton blooms in the Southern Ocean. Science 262:1832–1837.PubMedCrossRefGoogle Scholar
  111. Takahashi, T., Takahashi, T.T., and Sutherland S. 1995. An assessment of the role of the North Atlantic as a CO2 sink. Philos. Trans. R. Soc. Lond. B Biol. Sci. 348:143–152.CrossRefGoogle Scholar
  112. Takahashi, T., Feely, R.A., Weiss, R.F., Wanninkhof, R.H., Chipman, D.W., Sutherland, S.C., and Takahashi, T. 1997. Global air-sea flux of CO2: an estimate based on measurements of sea-air PCO2 difference. Proc. Natl. Acad. Sci. U.S.A. 94:8282–8299.Google Scholar
  113. Thomson, D.J. 1997. Dependence of global temperatures on atmospheric CO2 and solar irradiance. Proc. Natl. Acad. Sci. U.S.A. 94:8370–8377.PubMedCrossRefGoogle Scholar
  114. USEPA (U.S. Environmental Protection Agency). 1987. An assessment of the effects of ultraviolet-B radiation on aquatic organisms. In Assessing the Risks of Trace Gases That Can Modify the Stratosphere. EPA 400/1–87/001 C. EPA, Washington, DC.Google Scholar
  115. Vernet, M., and Smith, R.C. 1997. Effects of ultraviolet radiation on the pelagic Antarctic ecosystem. In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D-P. Häder, pp. 247–265. Academic Press and Landes, Austin, TX.Google Scholar
  116. Vernet, M., Brody, E.A., Holm-Hansen, O., and Mitchell, B.G. 1994. The response of Antarctic phytoplankton to ultraviolet radiation: absorption, photosynthesis, and taxonomic composition. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, eds. C.S. Weiler, and P.A. Penhale, pp. 207–227. Antarctic Research Series 62. American Geophysical Union, Washington, DC.Google Scholar
  117. Villafane, V.E., Helbling, W.W., Holm-Hansen, O., and Chalker, B.E. 1995. Acclimatization of Antarctic natural phytoplankton assemblages when exposed to solar ultraviolet radiation. J. Plankton Res. 17:2295–2306.CrossRefGoogle Scholar
  118. Vincent, W.F., and Roy, S. 1993. Solar ultraviolet radiation and aquatic primary production: damage, protection and recovery. Environ. Rev. 1:1–12.CrossRefGoogle Scholar
  119. Wängberg, S.-Å, and Selmer, J.-S. 1997. Studies of effects of UV-B radiation on aquatic model ecosystems. In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D.-P. Häder, pp. 199–214. Academic Press and Landes, Austin, TX.Google Scholar
  120. Wängberg, S.-Å, Selmer, J.-S., Ekelund, N.G.A., and Gustavson, K. 1996. UV-B effects on Nordic marine ecosystems. Temallord, Nordic Council of Ministers, Denmark, p. 515.Google Scholar
  121. Wetzel, R.G., Hatcher, P.G., and Bianchi, T.S. 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr. 40:1369–1380.CrossRefGoogle Scholar
  122. Wiencke, C., Bartsch, I., Bischoff, B., Peters, A.F., and Breeman, A.M. 1994. Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot. Mar. 37:247–259.CrossRefGoogle Scholar
  123. Williamson, C.E. 1995. What role does UV-B radiation play in freshwater ecosystems? Limnol. Oceanogr. 40:386–392.CrossRefGoogle Scholar
  124. Williamson, C.E. 1996. Effects of UV radiation on freshwater ecosystems. Int. J. Environ. Stud. 51: 245–256. CrossRefGoogle Scholar
  125. Xiong, F., Lederer, F., Lukavsky, J., and Nedbal, L. 1996. Screening of freshwater algae (Chlorophyta, Chromophyta) for ultraviolet-B sensitivity of the photosynthetic apparatus. J. Plant Physiol. 148:42–48CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Donat-P. Häder

There are no affiliations available

Personalised recommendations