Advertisement

Ultraviolet Radiation and Coral Communities

  • Daniel F. Gleason
Chapter

Abstract

Coral reefs are considered to be the most diverse marine ecosystem on Earth and are thought to rival tropical rain forests in terms of their biological complexity and productivity (Connell 1978; Jackson 1991). The primary constructs of tropical reef systems are reef-building corals, which produce a continuously growing skeleton via biosynthesis and deposition of calcium carbonate. Growth and death of corals provide habitat structure and topographic complexity that can be exploited by the myriad of algae, invertebrates, and vertebrates that reside in these ecosystems (Hoegh-Guldberg 1999).

Keywords

Coral Reef Ultraviolet Radiation Great Barrier Reef Coral Community Coral Bleaching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambarsari, I., Brown, B.E., Barlow, R.G., Britton, G., and Cummings, D. 1997. Fluctuations in algal chlorophyll and carotenoid pigments during solar bleaching in the coral Goniastrea aspera at Phuket, Thailand. Mar. Ecol. Prog. Ser. 159:303–307.Google Scholar
  2. Atwood, D.K., Hendee, J.C., and Mendez, A. 1992. An assessment of global warming stress on Caribbean coral reef ecosystems. Bull. Mar. Sci. 51:118–130.Google Scholar
  3. Baker, K., Smith, R.C., and Green, A.E.S. 1980. Middle ultraviolet reaching the ocean surface. Photochem. Photobiol. 32:367–374.Google Scholar
  4. Banaszak, A.T., and Trench, R.K. 1995. Effects of ultraviolet (UV) radiation on marine micoalgal-invertebrate symbioses. II. The synthesis of mycosporine-like amino acids in response to exposure to UV in Anthopleura elegantissima and Cassiopeia xamachana. J. Exp. Mar. Biol. Ecol. 194:233–250.Google Scholar
  5. Banaszak, A.T., Lesser, M.P., Kuffner, I.B., and Ondrusek, M. 1998. Relationship between ultraviolet (UV) radiation and mycosporine-like amino acids (MAAs) in marine organisms. Bull. Mar. Sci. 63:617–628.Google Scholar
  6. Bentley, R. 1990. The shikimate pathway—a metabolic tree with many branches. Crit. Rev. Biochem. 25:307–384.Google Scholar
  7. Brown, B. 1997. Coral bleaching: causes and consequences. Coral Reefs 16: S129-S 138.Google Scholar
  8. Brown, B.E., Ambarsari, L., Warner, M.E., Fitt, W.K., Dunne, R.P., Gibb, S.W., and Cummings, D.G. 1999. Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105.Google Scholar
  9. Catala-Stucki, R. 1959. Fluorescence effects from corals irradiated with ultra-violet rays. Nature (Lond.) 183:949.Google Scholar
  10. Cockell, C.S., and Knowland, J. 1999. Ultraviolet radiation screening compounds. Biol. Rev. (Camb.) 74:311–345.PubMedGoogle Scholar
  11. Coffroth, M.A. 1990. Mucous sheet formation on poritid corals: an evaluation of coral mucus as a nutrient source on reefs. Mar. Biol. 105:39–49.Google Scholar
  12. Coley, P.D., Bryant, J.P., and Chapin, F.S. III. 1985. Resource availability and plant antiherbivore defense. Science 230:895–899.PubMedGoogle Scholar
  13. Connell, J.H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:1302–1310.PubMedGoogle Scholar
  14. Darwin, C.R. 1842. The Structure and Distribution of Coral Reefs. Smith Elder, London.Google Scholar
  15. D’Elia, C.F., and Wiebe, W.J. 1990. Biogeochemical nutrient cycles in coral reef ecosystems. In: Ecosystems of the World, V. 25, Ed., Z. Dubinsky, pp. 49–74. Elsevier, Amsterdam.Google Scholar
  16. Drollet, J.H., Glaziou, P., and Martin, P.M.V. 1993. A study of mucus from the solitary coral Fungi fungites (Scleractinia: Fungiidae) in relation to photobiological UV adaptation. Mar. Biol. 115:263–266.Google Scholar
  17. Drollet, J.H., Faucon, M., Maritorena, S., and Martin, P.M.V. 1994. A survey of environmental physico-chemical parameters during a minor coral mass bleaching event in Tahiti in 1993. Aust. J. Mar. Freshw. Res. 45:1149–1156.Google Scholar
  18. Drollet, J.H., Faucon, M., and Martin, P.M.V. 1995. Elevated sea-water temperature and solar UV-B flux associated with two successive coral mass bleaching events in Tahiti. Mar. Freshw. Res. 46:1153–1157.Google Scholar
  19. Drollet, J.H., Teai, T., Faucon, M., and Martin, P.M.V. 1997. Field study of compensatory changes in UV-absorbing compounds in the mucus of the solitary coral Fungia repanda (Scleractina: Fungiidae) in relation to solar UV radiation, sea-water temperature, and other coincident physico-chemical parameters. Mar. Freshw. Res. 48:329–333.Google Scholar
  20. Dunlap W.C., and Chalker, B.E. 1986. Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleratinian. Coral Reefs 5:155–159.Google Scholar
  21. Dunlap, W.C., and Shick, J.M. 1998. Ultraviolet radiation absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J. Phycol. 34:418–430.Google Scholar
  22. Dunlap, W.C., and Yamamoto, Y. 1995. Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp. Biochem. Physiol. B 112:105–114.Google Scholar
  23. Dunlap, W.C., Chalker, B.E., and Oliver, J.K. 1986. Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Austrialia. III. UV-B absorbing compounds. J. Exp. Mar. Biol. Ecol. 104:239–248.Google Scholar
  24. Dunne, R.P., and Brown, B.E. 1996. Penetration of solar UVB radiation in shallow tropical waters and its potential biological effects on coral reefs; results from the central Indian Ocean and Andaman Sea. Mar. Ecol. Prog. Ser. 144:109–118.Google Scholar
  25. Dykens, J.A., Shick, J.M., Benoit, C., Buettner, G.R., and Winston, G.W. 1992. Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J. Exp. Biol. 168:219–241.Google Scholar
  26. Falkowski, P.G., Dubinsky, Z., Muscatine, L., and Porter, J.W. 1984. Light and the bioenergetics of a symbiotic coral. Bio-Science 34:705–709.Google Scholar
  27. Fitt, W.K., and Warner, M.E. 1995. Bleaching patterns of four species of Caribbean reef corals. Biol. Bull. (Woods Hole) 189:298–307.Google Scholar
  28. Fitt, W.K., Spero, H.J., Halas, J., White, M.W., and Porter, J.W. 1993. Recovery of the coral Montastrea annularis in the Florida Keys after the 1987 Carribbean “bleaching event.” Coral Reefs 12:57–64.Google Scholar
  29. Fleischmann, E.M. 1989. The measurement and pentration of ultraviolet radiation into tropical marine water. Limnol. Oceanogr. 34:1623–1629.Google Scholar
  30. Fricke, H.W., and Schuhmacher, H. 1983. The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). Mar. Ecol. Prog. Ser. 4:163–194.Google Scholar
  31. Garcia-Pichel, F. 1998. Solar ultraviolet and evolutionary history of cyanobacteria. Origins Life Evol. Biosph. 28:321–347.Google Scholar
  32. Gates, R.D., Baghdarian, G., and Muscatine, L. 1992. Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol. Bull. (Woods Hole) 182:324–332.Google Scholar
  33. Gattuso, J.P. 1987. Ecomophologie, métabolisme, croissance et calcification du scléractiniare zooxanthelles, Stylophora pistillata (Golfe d’Aquaba, Mer Rouge): influence de éclairement. Thèse de Doctorat, Université d’Aix-Marseille II, France.Google Scholar
  34. Gleason, D.F. 1993a. Differential effects of ultraviolet radiation on green and brown morphs of the Caribbean coral Porites astreoides. Limnol. Oceanogr. 38:1452–1463.Google Scholar
  35. Gleason, M.G. 1993b. Effects of disturbance on coral communities: bleaching in Moorea, French Polynesia. Coral Reefs 12:193–201.Google Scholar
  36. Gleason, D.F. 1998. Sedimentation and distributions of green and brown morphs of the Caribbean coral Porites astreoides. J. Exp. Mar. Biol. Ecol. 230:73–89.Google Scholar
  37. Gleason, D.F., and Wellington, G.M. 1993. Ultraviolet radiation and coral bleaching. Nature (Lond.) 365:836–838.Google Scholar
  38. Gleason, D.F., and Wellington, G.M. 1995. Variation in UVB sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar. Biol. 123:693–703.Google Scholar
  39. Glynn, P.W. 1976. Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol. Monogr. 46:431–456.Google Scholar
  40. Glynn, P.W. 1991. Coral reef bleaching in the 1980s and possible connections with global warming. Trends Ecol. Evol. 6:175–179.PubMedGoogle Scholar
  41. Glynn, P.W. 1993. Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17.Google Scholar
  42. Glynn, P.W., and D’Croz, L. 1990. Experimental evidence for high temperature stress as the cause of El Nino-coincident coral mortality. Coral Reefs 8:181–191.Google Scholar
  43. Glynn, P.W., Imai, R., Sakai, K., Nakano, Y., and Yamazato, K. 1992. Experimental reponses of Okinawan (Ryukyu Islands, Japan) reef corals to high sea temperature and UV radiation. Proc. 7th Int. Coral Reef Symp. (Guam) 1:27–37.Google Scholar
  44. Gulko, D. 1995. The ultraviolet radiation environment of Kane’ohe Bay, O’ahu. In Ultraviolet Radiation and Coral Reefs, eds. D. Gulko and P.L. Jokiel, pp. 25–35. HIMB Technical Report 41, UNIHI-Sea Grant CR-95–03. University of Hawaii, Honolulu.Google Scholar
  45. Hoegh-Guldberg, O. 1999. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50:839–866.Google Scholar
  46. Huston, M.A. 1985a. Patterns of species diversity on coral reefs. Annu. Rev. Ecol. Syst. 16:149–177.Google Scholar
  47. Huston, M.A. 1985b. Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4:19–25.Google Scholar
  48. Ishikura, M., Kato, C., and Maruyama, T. 1997. UV-absorbing substances in zooxanthellate and azooanthellate clams. Mar. Biol. 128:649–655.Google Scholar
  49. Jackson, J.B.C. 1991. Adaptation and diversity of reef corals. Bio-Science 41:475–482.Google Scholar
  50. Jerlov, N.G. 1950. Ultra-violet radiation in the sea. Nature (Lond.) 166:111–112.PubMedGoogle Scholar
  51. Jerlov, N.G. 1968. Optical Oceanography. Elsevier, New York.Google Scholar
  52. Jokiel, P.L. 1980. Solar ultraviolet radiation and coral reef epifauna. Science 207:1069–1071.PubMedGoogle Scholar
  53. Jokiel, P.L., and York, R.H. 1982. Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae. Bull. Mar. Sci. 32:301–315.Google Scholar
  54. Jokiel, P.L., and York, R.H. 1984. Importance of ultraviolet radiation in photoinhibition of microalgal growth. Limnol. Oceanogr. 29:192–199.Google Scholar
  55. Jokiel, P.L., Lesser, M.P., and Ondrusek, M.E. 1997. UV-absorbing compounds in the coral Pocillopora damicornis: interactive effects of UV radiation, photosynthetically active radiation, and water flow. Limnol. Oceanogr. 42:1468–1473.Google Scholar
  56. Jones, R., Hoegh-Guldberg, O., Larkum, A.W.L., and Schreiber, U. 1998. Temperatureinduced bleaching of corals begins with impairment of dark metabolism in zooxanthellae. Plant Cell Environ. 21:1219–1230.Google Scholar
  57. Karentz, D. 1994. Ultraviolet tolerance mechanisms in Antarctic marine organisms. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, eds. C.S. Weiler and P.A. Penhale. Antarct. Res. Ser. 62:93–110.Google Scholar
  58. Karentz, D., and Lutze, L.H. 1990. Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments. Limnol. Oceanogr. 35:549–561.Google Scholar
  59. Kawaguti, S. 1944. On the physiology of reef corals. VI. Study on the pigments. Palao Trop. Biol. Sta. Stud. 2:617–673.Google Scholar
  60. Kinzie, R.A. 1993. Effects of ambient levels of solar ultraviolet radiation on zooxanthellae and photosynthesis of the reef coral Montipora verrucosa. Mar. Biol. 116:319–327.Google Scholar
  61. Kirk, J.T.O., Hargraves, D.P., Morris, R., Coffin, R., David, B., Fredrickson, D., Karentz, D., Lean, D., Lesser, M.P., Madronich, S., Morrow, J.H., Nelson, N., and Scully, N. 1994. Measurements of UV-B radiation in two freshwater lakes: an instrument intercomparison. Arch. Hydrobiol. Ergeb. Limnol. 43:71–99.Google Scholar
  62. Kohn, A., and Helfrich, P. 1957. Primary productivity of a Hawaiian coral reef. Limnol. Oceanogr. 2:241–251.Google Scholar
  63. Kuffner, I.B., Ondrusek, M.E., and Lesser, M.P. 1995. Distribution of mycosporine-like amino acids in the tissues of Hawaiian Scleractinia: a depth profile. In Ultraviolet Radiation and Coral Reefs, eds. D. Gulko and P.L. Jokiel, pp. 77–85. HIMB Technical Report 41, UNIHI-Sea Grant CR-95–03. University of Hawaii, Honolulu.Google Scholar
  64. Larkum, A.W.D., and Wood, W.F. 1993. The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and seagrasses. Photosynth. Res. 36:17–23.Google Scholar
  65. Lesser, M.P. 1989. Photobiology of natural populations of zooanthellae from the sea anemone Aiptasia pallida: assessment of the host’s role in protection against ultraviolet radiation. Cytometry 10:653–658.PubMedGoogle Scholar
  66. Lesser, M. 1995. General overview of instrumentation, experimental methods, and attenuation of UV radiation in natural waters. In Ultraviolet Radiation and Coral Reefs, eds. D. Gulko and P.L. Jokiel, pp. 15–18. HIMB Technical Report 41, UNIHI-Sea Grant CR-95–03. University of Hawaii, Honolulu.Google Scholar
  67. Lesser, M.P. 1996. Elevated temperature and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41:217–283.Google Scholar
  68. Lesser, M.P. 1997. Oxidative stress causes coral bleaching during exposure to elevated temperature. Coral Reefs 16:187–192.Google Scholar
  69. Lesser, M.P., and Lewis, S. 1996. Action spectrum for the effects of UV radiation on photosynthesis in the hermatypic coral Pocillopora damicornis. Mar. Ecol. Prog. Ser. 134:171–177.Google Scholar
  70. Lesser, M.P., and Shick, J.M. 1989. Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar. Biol. 102:243–255.Google Scholar
  71. Lesser, M.P., Stochaj, W.R., Tapely, D.W., and Shick, J.M. 1990. Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232.Google Scholar
  72. Logan, A., Halcrow, K., and Tomascik, T. 1990. UV excitation-fluorescence in polyp tissue of certain scleractinian corals from Barbados and Bermuda. Bull. Mar. Sci. 46: 807–813.Google Scholar
  73. Lyons, M.M., Aas, P., Pakulski, J.D., Van Waasbergen, L., Miller, R.V., Mitchell, D.L., and Jeffrey, W.H. 1998. DNA damage induced by ultraviolet radiation in coral-reef microbial communities. Mar. Biol. 130:537–543.Google Scholar
  74. Madronich, S., McKenzie, R.L., Caldwell, M.M., and Bjorn, L.O. 1995. Changes in ultraviolet radiation reaching the earth’s surface. Ambio 24:143–152.Google Scholar
  75. Maragos, J.E. 1972. A study of the ecology of Hawaiian reef corals. Ph.D. Dissertation, University of Hawaii, Honolulu.Google Scholar
  76. Masuda, K., Goto, M., Maruyama, T., and Miyachi, S. 1993. Adaption of solitary corals and their zooxanthellae to low light and UV radiation. Mar. Biol. 117:685–691.Google Scholar
  77. Meikle, P., Richards, G.N., and Yellowlees, D. 1988. Structural investigations on the mucus from six species of coral. Mar. Biol. 99:187–193.Google Scholar
  78. Morales, R.G.E., Jara, G.P., and Cabera, S. 1993. Solar ultraviolet measurements by onitrobenzaldehyde actinometry. Limnol. Oceanogr. 38: 703–705 .Google Scholar
  79. Muscatine, L. 1973. Nutrition of corals. In Biology and Geology of Coral Reefs, Vol. II, Biology, Eds. O.A. Jones and R. Endean, pp. 77–115. Academic Press, New York.Google Scholar
  80. Muscatine, L., and Porter, J.W. 1977. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bio-Science 27:454 460.Google Scholar
  81. Muszynski, F.Z., Bruckner, A., Armstrong, R.A., Morell, J.M., and Corredor, J.E. 1998. Within-colony variations of UV absorption in a reef building coral. Bull. Mar. Sci. 63:589–594.Google Scholar
  82. Norris, S. 1999. Marine life in the limelight. Bio-Science 49:520–526.Google Scholar
  83. Odum, H.T., and Odum, E.P. 1955. Trophic structure and productivity of windward coral reef community on Eniwetok Atoll. Ecol. Monogr. 25:291–320.Google Scholar
  84. Porra, R.J., Pfundel, E.E., and Engel, N. 1997. Metabolism and function of photosynthetic pigments. In Phytoplankton Pigments in Oceanography, eds. S.W. Jeffery, R.F.C. Mantosra, and S.W. Wright, pp. 85–126, UNESCO, Paris.Google Scholar
  85. Porter J.W., Fitt, W.K., Spero, H.J., Rogers, C.S., and White, M.W. 1989. Bleaching in reef corals: physiological and stable isotopic responses. Proc. Natl. Acad. Sci. U.S.A. 86:9342–9346.PubMedGoogle Scholar
  86. Reaka-Kudla, M.L., O’Connell, D.S., Regan, J.D., and Wicklund, R.I. 1993. Effects of temperature and UV-B on different components of coral reef communities from the Bahamas. In Proceedings of the Colloquium on Global Aspects of Coral Reefs: Health, Hazards, and History, ed. R.N. Ginsburg, pp. 126–130. Rosenstiel School of Marine and Atmospheric Science, University of Miami.Google Scholar
  87. Regan, J.D., Carrier, W.L., Gucinski, H., B.L., Yoshida, H., Fujimura, R.K., and Wicklund, R.I. 1992. DNA as a solar dosimeter in the ocean. Photochem. Photobiol. 56:35–42.PubMedGoogle Scholar
  88. Santas, R., Santas, PH., Lianou, CH., and Korda, A. 1998. Community responses to UV radiation. II. Effects of solar UVB on field-grown diatom assemblages of the Carribean. Mar. Biol. 131:163–171.Google Scholar
  89. Scelfo, G. 1985. The effects of visible and ultraviolet solar radiation on a UV-absorbing compound and chlorophyll a in a Hawaiian zoanthid. Proc. 5th Int. Coral Reef Congr. (Tahiti) 6:107–112.Google Scholar
  90. Scelfo, G. 1986. Relationship between solar radiation and pigments of the coral Montipora verrucosa and its zooxanthellae. In Coral Reef Population Biology eds. P.L. Jokiel, R.H. Richmond, and R.A. Rogers. Technical Report 37, Hawaii Institute of Marine Biology, pp. 440–451. Honolulu.Google Scholar
  91. Schlicter, D., and Fricke, H.W. 1990. Coral host improves photosynthesis of endosymbiotic algae. Naturwissenschaften 77:447–450.Google Scholar
  92. Schlicter, D., and Fricke, H.W. 1991. Mechanisms of amplification of photosynthetically active radiation in the symbiotic deep-water coral Leptoseris fragilis. Hydrobiologia 216/217:389–394.Google Scholar
  93. Schlicter, D., Fricke, H.W., and Weber, W. 1986. Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Mar. Biol. 91:403–407.Google Scholar
  94. Shibata, K. 1969. Pigments and UV-absorbing substance in corals and blue-green alga living on the Great Barrier Reef. Plant Cell Physiol. 10:325–335.Google Scholar
  95. Shick, J.M., Lesser, M.P., and Stochaj, W.R. 1991. Ultraviolet radiation and photooxidative stress in zooxanthellate anthozoa: the sea anemone Phyllodiscus semoni and the octocoral Clavularia sp. Symbiosis 10:145–173.Google Scholar
  96. Shick, J. M., Dunlap, W.C., Chalker, B.E., Banaszak, A.T., and Rosenzweig, T.K. 1992. Survey of ultraviolet radiation-absorbing mycosporine-like amino acids in organs of coral reef holothuroids. Mar. Ecol. Prog. Ser. 90:139–148.Google Scholar
  97. Shick, J. M., Lesser, M.P., Dunlap, W.C., and Stochaj, W.R. 1995. Depth-dependent reponses to solar ultraviolet radiation and oxidative stress in the zooxanthellate coral Acropora microphthalma. Mar. Biol. 122:41–51.Google Scholar
  98. Shick, J.M., Lesser, M.P., and Jokiel, P.L. 1996. Effects of ultraviolet radiation on corals and other coral reef organisms. Global Change Biol. 2:527–545.Google Scholar
  99. Shick, J.M., Romaine-Lioud, S., Ferrier-Pages, C., and Gattuso, J.P. 1999. Ultraviolet-B radiation stimulates shikimate pathway-dependent accumulation of mycosporine-like amino acids in the coral Stylophora pistillata despite decreases in its population of symbiotic dinoflagellates. Limnol. Oceanogr. 44:1667–1682.Google Scholar
  100. Siebeck, O. 1981. Photoreactivation and depth-dependent UV tolerance in reef coral in the Great Barrier Reef/Australia. Naturwissenschaften 68:426–428.Google Scholar
  101. Siebeck, O. 1988. Experimental investigation of UV tolerance in hermatypic corals (Scleractinia). Mar. Ecol. Prog. Ser. 43:95–103.Google Scholar
  102. Smith, R.C., and Baker, K.S. 1979. Penetration of UV-B and biologically effective doserates in natural waters. Photochem. Photobiol. 29:311–323.Google Scholar
  103. Smith, R.C., and Baker, K.S. 1981. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 20:177–184.PubMedGoogle Scholar
  104. Smith, R.C., and Calkins, J. 1976. The use of the Robertson meter to measure the penetration of solar middle-ultraviolet radiation (UV-B) into natural water. Limnol. Oceanogr. 21:746–749.Google Scholar
  105. Stolarski, R., Bojkov, R., Bishop, L., Zerefos, C., Staehelin, J., and Zawodny, J. 1992. Measured trends in stratospheric ozone. Science 256:342–349.PubMedGoogle Scholar
  106. Szmant, A.M., and Gassman, N.J. 1990. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8:217–224.Google Scholar
  107. Teai, T., Drollet, J.H., Bianchini, J-P., Cambon, A., and Martin, P.M.V. 1998. Occurrence of ultraviolet radiation-absorbing mycosporine-like amino acids in coral mucus and whole corals of French Polynesia. Mar. Freshw. Res. 49:127–132.Google Scholar
  108. Trench, R.K. 1979. The cell biology of plant-animal symbiosis. Annu. Rev. Plant. Physiol. 30:485–531.Google Scholar
  109. Vareschi, E., and Fricke, H.W. 1986. Light responses of a scleractinian coral (Plerogyra sinuosa). Mar. Biol. 90:395–402.Google Scholar
  110. Veron, J.E.N. 1986. Corals of Australia and the Indo-Pacific. Angus and Robertson, London/Sydney.Google Scholar
  111. Wood, W.F. 1989. Photoadaptive responses of the tropical red alga Eucheuma striatum Schmitz (Gigartinales) to ultra-violet radiation. Aquat. Bot. 33:41–51.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Daniel F. Gleason

There are no affiliations available

Personalised recommendations