Abstract
Many real-world data analysis tasks involve estimating unknown quantities from some given observations. In most of these applications, prior knowledge about the phenomenon being modelled is available. This knowledge allows us to formulate Bayesian models, that is prior distributions for the unknown quantities and likelihood functions relating these quantities to the observations. Within this setting, all inference on the unknown quantities is based on the posterior distribution obtained from Bayes’ theorem. Often, the observations arrive sequentially in time and one is interested in performing inference on-line. It is therefore necessary to update the posterior distribution as data become available. Examples include tracking an aircraft using radar measurements, estimating a digital communications signal using noisy measurements, or estimating the volatility of financial instruments using stock market data. Computational simplicity in the form of not having to store all the data might also be an additional motivating factor for sequential methods.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer Science+Business Media New York
About this chapter
Cite this chapter
Doucet, A., de Freitas, N., Gordon, N. (2001). An Introduction to Sequential Monte Carlo Methods. In: Doucet, A., de Freitas, N., Gordon, N. (eds) Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3437-9_1
Download citation
DOI: https://doi.org/10.1007/978-1-4757-3437-9_1
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-2887-0
Online ISBN: 978-1-4757-3437-9
eBook Packages: Springer Book Archive