Skip to main content

An Introduction to Sequential Monte Carlo Methods

  • Chapter

Part of the Statistics for Engineering and Information Science book series (ISS)

Abstract

Many real-world data analysis tasks involve estimating unknown quantities from some given observations. In most of these applications, prior knowledge about the phenomenon being modelled is available. This knowledge allows us to formulate Bayesian models, that is prior distributions for the unknown quantities and likelihood functions relating these quantities to the observations. Within this setting, all inference on the unknown quantities is based on the posterior distribution obtained from Bayes’ theorem. Often, the observations arrive sequentially in time and one is interested in performing inference on-line. It is therefore necessary to update the posterior distribution as data become available. Examples include tracking an aircraft using radar measurements, estimating a digital communications signal using noisy measurements, or estimating the volatility of financial instruments using stock market data. Computational simplicity in the form of not having to store all the data might also be an additional motivating factor for sequential methods.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4757-3437-9_1
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4757-3437-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doucet, A., de Freitas, N., Gordon, N. (2001). An Introduction to Sequential Monte Carlo Methods. In: Doucet, A., de Freitas, N., Gordon, N. (eds) Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3437-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3437-9_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2887-0

  • Online ISBN: 978-1-4757-3437-9

  • eBook Packages: Springer Book Archive