Physiologic Changes in Soft Tissue and Bone as a Function of Age

  • Neal S. Fedarko
  • Jay R. Shapiro


Changes in the musculoskeletal system give visible and functional evidence that the aging process has left its imprint on our bodies. In contrast to the vigorous youngster, the elderly appear to have lost height, their posture is bent in part due to the development of kyphosis, and a cane provides the support and security that are required because of weakened musculature and peripheral nerve degeneration. These characteristics reflect the fact that significant changes have occurred in all the components of the extracellular matrix: ligaments and tendons, muscle fiber composition, and the structure and quantity of bone mass. As a result, the elderly typically display thinned skin (which is more susceptible to injury), diminished muscle bulk (which results in weakness that magnifies the effects of neurologic degeneration on gait and posture), and diminished bone mass (which increases the risk of fracture).


Bone Formation Bone Mass Bone Resorption Bone Remodel Bone Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marks S Jr, Hermey DC. The structure and development of bone. In: Belezikian J, Raisz LC, Rodan GA (eds) Principles of Bone Biology. San Diego: Academic, 1996:3–14.Google Scholar
  2. 2.
    Konori T, Yagi H, Nomura S. Targeted disruption of CBFA 1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997;89:755–764.CrossRefGoogle Scholar
  3. 3.
    Shapiro IM. Discovery: Osf2/Cbfa1, a master gene of bone formation. Clin Orthodontal Res 1999;2:42–46.Google Scholar
  4. 4.
    Quack I, Vonderstrass B, Stock M, et al. Mutation analysis of core binding factor Al in patients with cleidocranial dysplasia. Am J Hum Genet 1999;65:1268–1278.PubMedCrossRefGoogle Scholar
  5. 5.
    Iwamoto M, Enomoto-Iwamoto M, Kurisu K. Actions of hedgehog proteins on skeletal cells. Crit Rev Oral Biol Med 1999;10:477–486.PubMedCrossRefGoogle Scholar
  6. 6.
    Hu D, Helms JA. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 1999;126:873–884.Google Scholar
  7. 7.
    Parfitt AM, Drezner MK, Glorieux FH, et al. Histomorphometry: standardization of nomenclature, symbols and units. J Bone Miner Res 1987;2:595–610.PubMedCrossRefGoogle Scholar
  8. 8.
    Johnston C Jr, Slemenda CW, Melton LJ. Bone density measurements and the management of osteoporosis. In: Favus M (ed) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Philadelphia: Lippincott-Raven, 1996:152–164.Google Scholar
  9. 9.
    Bouxein ML, Coan BS, Lee SC. Prediction of the strength of elderly proximal femur by bone mineral density and quantitative ultrasound measurements on heel and tibia. Bone 1999;25:49–54.CrossRefGoogle Scholar
  10. 10.
    Sone T, Imai Y, Tomonitsu T, Fukunaga M. Calcaneus as a site for the assessment of bone mass. Bone 1998;22:155S-157S.PubMedCrossRefGoogle Scholar
  11. 11.
    Matsumoto T, Nakayama K, Kodama Y, Fuse H, Nakamura T, Fukumoto S. Effect of mechanical unloading and reloading on periosteal bone formation and gene expression in tail-suspended rapidly growiing rats. Bone 1998;22:89S-93S.PubMedCrossRefGoogle Scholar
  12. 12.
    Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem 1999;45:1353–1358.PubMedGoogle Scholar
  13. 13.
    Theintz G, Buchs B, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 1992;75:1060–1065.PubMedCrossRefGoogle Scholar
  14. 14.
    Eastell R, Peel NF, Hannon RA, et al. The effect of age on bone collagen turnover as assessed by pyridinium crosslinks and procollagen I C-terminal peptide. Osteoporos Int 1993;3(suppl 1):100–101.PubMedCrossRefGoogle Scholar
  15. 15.
    Miller PD, Baran DT, Bilezikian JP, et al. Practical clinical application of biochemical markers of bone turnover: consensus of an expert panel. J Clin Densitom 1999;2:323–324.PubMedCrossRefGoogle Scholar
  16. 16.
    Garnero P, Sornay-Rendu E, Duboeuf F, Delmas PD. Markers of bone turnover predict postmenopausal forearm bone loss over 4 years: the OFELY study. J Bone Miner Res 1999;14:1614–1621.PubMedCrossRefGoogle Scholar
  17. 17.
    Meunier P, Coindre JM, Edouard CM, Arlot ME. Bone histomorphometry in Paget’s disease: quantitative and dynamic analysis of pagetic and non-pagetic bone tissue. Arthritis Rheum 1980;23:1095–1103.PubMedCrossRefGoogle Scholar
  18. 18.
    Ankrom M, Shapiro JR. Paget’s disease. J Am Geriatr Soc 1997;46:1025–1033.Google Scholar
  19. 19.
    Ott SM. Theoretical and methodological approach. In: Belezikian J, Raisz LG, Rodan GA (eds) Principles of Bone Biology. San Diego: Academic, 1996:231–241.Google Scholar
  20. 20.
    Frost HM. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 1969;3:211–237.PubMedCrossRefGoogle Scholar
  21. 21.
    Nesbitt S, Nesbitt A, Helfrich M, Horton M. Biochemical characterization of human osteoclast integrins: osteoclasts express alpha v beta 3, alpha 2 beta 1 and alpha v beta 1 integrins. J Biol Chem 1993;268:16737–16745.PubMedGoogle Scholar
  22. 22.
    Aubin JE, Turksen K, Heersche JNM. Osteoblastic cell lineage. In: Noda M (ed) Cellular and Molecular Biology of Bone. San Diego: Academic, 1993:1–49.Google Scholar
  23. 23.
    Triffitt JT. The stem cell of the osteoblast. In: Belezikian J, Raisz LC, Rodan GA (eds) Principles of Bone Biology. San Diego: Academic, 1996:39–50.Google Scholar
  24. 24.
    Reid I, Veale AG, France JT. Glucocorticoid osteoporosis. J Asthma 1994;31:7–18.PubMedCrossRefGoogle Scholar
  25. 25.
    Grzesik WJ, Gehron Robey P. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic cells in vitro. J Bone Miner Res 1994;9: 487–496.PubMedCrossRefGoogle Scholar
  26. 26.
    Berresford JN, Graves SE, Smoothey CA. Formation of mineralized nodules by bone derived cells in vitro: a model of bone formation. Am J Med Genet 1993;45:163–178.CrossRefGoogle Scholar
  27. 27.
    Pusaz E. Osteoblast cell biology. In: Favus M (ed) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Philadelphia: Lippincott-Raven; 1996:11–16.Google Scholar
  28. 28.
    McSheehy PMJ, Chambers TJ. Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology 1986;118:824–828.PubMedCrossRefGoogle Scholar
  29. 29.
    Takahashi N, Udagawa N, Suda T. A new member of tumor necrosis factor ligand family, ODF/OPGL/ TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem Biophys Res Commun 1999;256: 449–455.PubMedCrossRefGoogle Scholar
  30. 30.
    Myers DEMF, Minkin C, Holloway WR, Wang H, Malakellis M, Nicholson GC. The expression and activation of RANK on mature osteoclasts. J Bone Miner Res 1999;14(suppl 1):S483.Google Scholar
  31. 31.
    Schilling AF, Briem D, Rueger JM, Amling M. Human bone marrow cells and peripheral blood cells have the same capacity to differentiate into functional active osteoclast-like cells (OCLs). J Bone Miner Res 1999;14(suppl 1):S487.Google Scholar
  32. 32.
    Chow JW, Wilson AJ, Chambers TJ, Fox SW. Mechanical loading stimulates bone formation by reactivation of bone lining cells in 13-week-old rats. J Bone Miner Res 1998;13:1760–1767.PubMedCrossRefGoogle Scholar
  33. 33.
    Canalis E. Insulin-like growth factors and the local regulation of bone formation. Bone 1993;14:273–276.PubMedCrossRefGoogle Scholar
  34. 34.
    Mochizuki H, Hakeda Y, Wakatsuki N, et al. Insulin-like growth factor-I supports formation and activation of osteoclasts. Endocrinology 1992:1075–1080.Google Scholar
  35. 35.
    Benedict MR, Ayres DC, Calore JD, Richman RA. Differential distribution of insulin-like growth factors and their binding proteins within bone: relationship to bone mineral density. J Bone Miner Res 1994;9:1803–1811.PubMedCrossRefGoogle Scholar
  36. 36.
    Ernst M, Rodan GA. Increased activity of insulin-like growth factor (IGF) in osteoblastic cells in the presence of growth hormone (GH): positive correlation with the presence of the GH-induced IGF-binding protein BP-3w. Endocrinology 1990;127:807–814.PubMedCrossRefGoogle Scholar
  37. 37.
    Kalus W, Zweckstetter M, Renner C, et al. Structure of the IGF-binding domain of the insulin-like growth factor-binding protein-5 (IGFBP-5): implications for IGF and IGF-I receptor interactions. EMBO J 1998;17:6558–6572.PubMedCrossRefGoogle Scholar
  38. 38.
    Richman C, Baylink DJ, Lang K, Dony C, Mohan S. Recombinant human insulin-like growth factor-binding protein-5 stimulates bone formation parameters in vitro and in vivo. Endocrinology 1999;40:4699–4705.CrossRefGoogle Scholar
  39. 39.
    Thompson J, Halloway L, Hoffman A, Butterfield E, Ghiron L, Marcus R. Effects of rGH amnd IGF-I on bone turnover in elderly women. J Bone Miner Res 1994;9:S238.Google Scholar
  40. 40.
    Marcus R, Butterfield L, Holloway L, et al. Effects of short term administration of rhGH to elderly people. J Clin Endocrinol Metab 1990;70:519–525.PubMedCrossRefGoogle Scholar
  41. 41.
    Eastell R. Management of corticosteroid-induced osteoporosis. J Intern Med 1995;237:439–447.PubMedCrossRefGoogle Scholar
  42. 42.
    Fitzpatrick LA, Belezikian JR Actions of parathyroid hormone. In: Belezikian J, Raisz LC, Rodan GA (eds) Principles of Bone Biology. San Diego: Academic, 1996: 339–346.Google Scholar
  43. 43.
    Fujita T, Inoue T, Morii H, et al. Effect of an intermittent weekly dose of human parathyroid hormone (1–34) on osteoporosis: a randomized double-masked prospective study using three dose levels. Osteoporos Int 1999;9: 296–306.PubMedCrossRefGoogle Scholar
  44. 44.
    Stewart AF, Horst R, Deftos LJ, Cadman EC, Lang R, Broadus AE. Biochemical evaluation of patients with cancer-associated hypercalcemia: evidence for humoral and nonhumoral groups. N Engl J Med 1980;303:1377–1383.PubMedCrossRefGoogle Scholar
  45. 45.
    Henderson JE, Shustik C, Kremer R, Rabban SA, Hendy G, Goltzman D. Circulating concentrations of parathyroid hormone-like peptide in malignancy and hyperparathyroidism. J Bone Miner Res 1990;5:105–112.PubMedCrossRefGoogle Scholar
  46. 46.
    Moseley JM, Martin TJ. Parathyroid hormone-related protein: physiological actions. In: Belezikian J, Raisz LC, Rodan GA (eds) Principles of Bone Biology. San Diego: Academic, 1996:363–376.Google Scholar
  47. 47.
    Lanske B, Amling M, Neff L, Guiducci J, Baron R, Kronenberg HM. Ablation of the PTHrP gene or the PTH/ PTHrP receptor gene leads to distinct abnormalities in bone development. J Clin Invest 1999;104:399–407.PubMedCrossRefGoogle Scholar
  48. 48.
    Wier E, Phillbrick W, Neff L, Amling M, Baron R, Broadus A. Targeted overexpression of parathyroid-related peptide in chondrocytes causes skeletal dysplasia and delayed osteogenesis. J Bone Miner Res 1995;10(suppl 1):S157.Google Scholar
  49. 49.
    Becker KL, Nylen ES, Cohen R, Snider RHJ. Calcitonin: structure, molecular biology, and actions. In: Belezikian J, Raisz LC, Rodan GA (eds) Principles of Bone Biology. San Diego: Academic, 1996:476–494.Google Scholar
  50. 50.
    Seth R, Motte P, Kehely A, et al. The development of a two-site enzuyme immunometric assay (EIA) for calcitonin and its application in the measurement of the hormone in normal subjects, MCT patients and postmenopausal women. Horm Metab Res 1989;21:3–5.Google Scholar
  51. 51.
    Stevenson JC, Hillyard CJ, MacIntyre I, Cooper H, Whitehead MI. Calcitonin and calcium regulating hormones in post-menopausal women. Lancet 1981;1:693–695.PubMedCrossRefGoogle Scholar
  52. 52.
    Tiegs RD, Brody JJ, Wahner HW, Barta J, Riggs BL. Calcitonin secretion in post-menopausal osteoporosis. N Engl J Med 1985;312:1097–1100.PubMedCrossRefGoogle Scholar
  53. 53.
    Jones G, Strugnell SA, DeLuca HR Current understanding of the molecular actions of vitamin D. Physiol Rev 1998;78:1193–1231.PubMedGoogle Scholar
  54. 54.
    Willheim M, Thien R, Schrattbauer K, et al. Regulatory effects of 1 alpha,25-dihydroxyvitamin D3 on the cytokine production of human peripheral blood lymphocytes. J Clin Endocrinol Metab 1999;84:3739–3744.PubMedCrossRefGoogle Scholar
  55. 55.
    Holick MR Noncalcemic actions of 1,25-dihydroxyvitamin D3 and clinical applications. Bone 1995;17:107S-111S.PubMedCrossRefGoogle Scholar
  56. 56.
    Tong WM, Hofer H, Ellinger A, Peterlik M, Cross HS. Mechanism of antimitogenic action of vitamin D in human colon carcinoma cells: relevance for suppression of epidermal growth factor-stimulated cell growth. Oncol Res 1999;11:77–84.PubMedGoogle Scholar
  57. 57.
    Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997; 138:863–870.PubMedCrossRefGoogle Scholar
  58. 58.
    Kuiper GG, Shughrue PJ, Merchenthaler I, Gustafsson A Jr. The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuro-endocrinol 1998;19:253–286.Google Scholar
  59. 59.
    Qu Q, Harkonen PL, Monkkonen J, Vaananen HK. Conditioned medium of estrogen-treated osteoblasts inhibits osteoclast maturation and function in vitro. Bone 1999;25: 211–215.PubMedCrossRefGoogle Scholar
  60. 60.
    Spelsberg TC, Subramanian M, Riggs L, Khosla S. The actions and interactions of sex steroids and growth factors /cytokines on the skeleton. Mol Endocrinol 1999; 1999:819–828.CrossRefGoogle Scholar
  61. 61.
    Oreffo RO, Kusec V, Virdi AS, et al. Expression of estrogen receptor-alpha in cells of the osteoclastic lineage. Histochem Cell Biol 1999;111:125–133.PubMedCrossRefGoogle Scholar
  62. 62.
    Collier FM, Huang WH, Holloway WR, et al. Osteoclasts from human giant cell tumors of bone lack estrogen receptors. Endocrinology 1998;139:1258–1267.PubMedCrossRefGoogle Scholar
  63. 63.
    Smith EP, Boyd J, Frank GR, et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med 1995;331:1056–1061.CrossRefGoogle Scholar
  64. 64.
    Belezikian JP, Morishima A, Bell J, Grumbach MM. Increased bone mass as a result of estrogen therapy in man with aromatase deficiency. N Engl J Med 1998;339: 599–603.CrossRefGoogle Scholar
  65. 65.
    Ebeling PR. Osteoporosis in men: new insights into aetiology, pathogenesis, prevention and management. Drugs Aging 1998;13:421–434.PubMedCrossRefGoogle Scholar
  66. 66.
    Bonewald LF. Transforming growth factor-ß. In: Belezikian J, Raisz L, Rodan G (eds) Principles of Bone Biology. San Diego: Academic, 1996:647–659.Google Scholar
  67. 67.
    Bonewald LF, Dallas SL. Role of active and latent transforming growth factor beta in bone formation. J Cell Biochem 1994;55:350–357.PubMedCrossRefGoogle Scholar
  68. 68.
    Groeneveld EH, Burger EH. Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 2000;142: 9–21.PubMedCrossRefGoogle Scholar
  69. 69.
    Prockop DJ, Sieron AL, Li SW. Procollagen N-proteinase and procollagen C-proteinase: two unusual metallo-proteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol 1998;16:399–408.PubMedCrossRefGoogle Scholar
  70. 70.
    Bostrom MP, Saleh KJ, Einhorn TA. Osteoinductive growth factors in preclinical fracture and long bone defects models. Orthop Clin North Am 1999;30:647–658.PubMedCrossRefGoogle Scholar
  71. 71.
    Bax BE, Wozney JM, Ashhurst D. Bone morphogenetic protein-2 increases the rate of callus formation after fracture of the rabbit tibia. Calcif Tissue Int 1999;65:83–89.PubMedCrossRefGoogle Scholar
  72. 72.
    Pacifici R. Aging and cytokine production. Calcif Tissue Int 1999;65:345–351.PubMedCrossRefGoogle Scholar
  73. 73.
    Pratelli L, Cenni E, Granchi D, Tarabusi C, Ciapetti G, Pizzoferrato A. Cytokines of bone turnover in post-menopause and old age. Minerva Med 1999;90:101–109.PubMedGoogle Scholar
  74. 74.
    Birk DE, Mayne R. Localization of collagen types I, III and V during tendon development: changes in collagen types I and III are correlated with changes in fibril diameter. Eur J Cell Biol 1997;72:352–361.PubMedGoogle Scholar
  75. 75.
    Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and aging of collagen. Mech Ageing Dev 1998;106:1–56.PubMedCrossRefGoogle Scholar
  76. 76.
    Hadley JC, Meek KM, Malik NS. Glycation changes the charge distribution of type I collagen fibrils. Glycoconj J 1998;15:835–840.PubMedCrossRefGoogle Scholar
  77. 77.
    Fisher LW, Termine JD. Noncollagenous proteins influencing the local mechanisms of calcification. Clin Orthop 1985;200:362–385.PubMedGoogle Scholar
  78. 78.
    Fisher LW, Termine JD, Young MF. Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several non-connective tissue proteins in a variety of species. J Biol Chem 1989;264:4571–4576.PubMedGoogle Scholar
  79. 79.
    Fleischmajer R, Fisher LW, MacDonald ED, Jacobs L Jr, Perlish JS, Termine JD. Decorin interacts with fibrillar collagen of embryonic and adult human skin. J Struct Biol 1991;106:82–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Bianco P, Fisher LW, Young MF, Termine JD, Robey PG. Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J Histochem Cytochem 1990;38:1549–1563.PubMedCrossRefGoogle Scholar
  81. 81.
    Scott JE. Extracellular matrix, supramolecular organisation and shape. J Anat 1995;187:259–269.PubMedGoogle Scholar
  82. 82.
    Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 1997;136:729–743.PubMedCrossRefGoogle Scholar
  83. 83.
    Xu T, Bianco P, Fisher LW, et al. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 1998;20:78–82.PubMedCrossRefGoogle Scholar
  84. 84.
    Oohira A, Nogami H. Elevated accumulation of hyaluronate in the tubular bones of osteogenesis imperfecta. Bone 1989;10:409–413.PubMedCrossRefGoogle Scholar
  85. 85.
    Fedarko NS, Termine JD, Robey PG. High-performance liquid chromatographic separation of hyaluronan and four proteoglycans produced by human bone cell cultures. Anal Biochem 1990;188:398–407.PubMedCrossRefGoogle Scholar
  86. 86.
    Fedarko NS, Vetter UK, Weinstein S, Robey PG. Age-related changes in hyaluronan, proteoglycan, collagen, and osteonectin synthesis by human bone cells. J Cell Physiol 1992;151:215–227.PubMedCrossRefGoogle Scholar
  87. 87.
    Bianco P, Fisher LW, Young MF, Termine JD, Robey PG. Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int 1991;49:421–426.PubMedCrossRefGoogle Scholar
  88. 88.
    Bianco P, Riminucci M, Bonucci E, Termine JD, Robey PG. Bone sialoprotein (BSP) secretion and osteoblast differentiation: relationship to bromodeoxyuridine incorporation, alkaline phosphatase, and matrix deposition. J Histochem Cytochem 1993;41:183–191.PubMedCrossRefGoogle Scholar
  89. 89.
    Riminucci M, Silvestrini G, Bonucci E, Fisher LW, Gehron Robey P, Bianco P. The anatomy of bone sialoprotein immunoreactive sites in bone as revealed by combined ultrastructural histochemistry and immunohistochemistry. Calcif Tissue Int 1995;57:277–284.PubMedCrossRefGoogle Scholar
  90. 90.
    Riminucci M, Bradbeer JN, Corsi A, et al. Vis-a-vis cells and the priming of bone formation. J Bone Miner Res 1998;13:1852–1861.PubMedCrossRefGoogle Scholar
  91. 91.
    Chen J, McKee MD, Nanci A, Sodek J. Bone sialoprotein mRNA expression and ultrastructural localization in fetal porcine calvarial bone: comparisons with osteopontin. Histochem J 1994;26:67–78.PubMedGoogle Scholar
  92. 92.
    Hunter GK, Kyle CL, Goldberg HA. Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 1994;300:723–728.PubMedGoogle Scholar
  93. 93.
    Chackalaparampil I, Peri A, Nemir M, et al. Cells in vivo and in vitro from osteopetrotic mice homozygous for c-src disruption show suppression of synthesis of osteopontin, a multifunctional extracellular matrix protein. Oncogene 1996;12:1457–1467.PubMedGoogle Scholar
  94. 94.
    Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BL. Altered wound healing in mice lacking a functional osteopontin gene (sppl 1). J Clin Invest 1998;101: 1468–1478.PubMedGoogle Scholar
  95. 95.
    Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR. Osteonectin, a bone-specific protein linking mineral to collagen. Cell 1981;26:99–105.PubMedCrossRefGoogle Scholar
  96. 96.
    Romberg RW, Werness PG, Riggs BL, Mann KG. Inhibition of hydroxyapatite crystal growth by bone-specific and other calcium-binding proteins. Biochemistry 1986;25: 1176–1180.PubMedCrossRefGoogle Scholar
  97. 97.
    Clezardin P, Malaval L, Ehrensperger AS, Delmas PD, Dechavanne M, McGregor JL. Complex formation of human thrombospondin with osteonectin. Eur J Biochem 1988;175:275–284.PubMedCrossRefGoogle Scholar
  98. 98.
    Kelm RJ Jr, Mann KG. The collagen binding specificity of bone and platelet osteonectin is related to differences in glycosylation. J Biol Chem 1991;266:9632–9639.PubMedGoogle Scholar
  99. 99.
    Sage H, Vernon RB, Decker J, Funk S, Iruela-Arispe ML. Distribution of the calcium-binding protein SPARC in tissues of embryonic and adult mice. J Histochem Cytochem 1989;37:819–829.PubMedCrossRefGoogle Scholar
  100. 100.
    Gilmour DT, Lyon GJ, Carlton MB, et al. Mice deficient for the secreted glycoprotein SPARC/ osteonectin /BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO J 1998;17:1860–1870.PubMedCrossRefGoogle Scholar
  101. 101.
    D’Souza SE, Ginsberg MH, Plow EF. Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci 1991;16:246–250.PubMedCrossRefGoogle Scholar
  102. 102.
    Hale JE, Fraser JD, Price PA. The identification of matrix Gla protein in cartilage. J Biol Chem 1988;263:5820–5824.PubMedGoogle Scholar
  103. 103.
    Luo G, D’Souza R, Hogue D, Karsenty G. The matrix Gla protein gene is a marker of the chondrogenesis cell lineage during mouse development. J Bone Miner Res 1995;10: 325–334.PubMedCrossRefGoogle Scholar
  104. 104.
    Price PA, Williamson MK, Haba T, Dell RB, Jee WS. Excessive mineralization with growth plate closure in rats on chronic warfarin treatment. Proc Natl Acad Sci USA 1982;79:7734–7738.PubMedCrossRefGoogle Scholar
  105. 105.
    Lian JB, Dunn K, Key LL Jr. In vitro degradation of bone particles by human monocytes is decreased with the depletion of the vitamin K-dependent bone protein from the matrix. Endocrinology 1986;118:1636–1642.PubMedCrossRefGoogle Scholar
  106. 106.
    Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996;382:448–452.PubMedCrossRefGoogle Scholar
  107. 107.
    Whitmore SE, Levine MA. Risk factors for reduced skin thickness and bone density: possible clues regarding pathophysiology, prevention, and treatment. J Am Acad Dermatol 1998;38:248–255.PubMedCrossRefGoogle Scholar
  108. 108.
    Lovell CR, Smolenski KA, Duance VC, Light ND, Young S, Dyson M. Type I and III collagen content and fibre distribution in normal human skin during ageing. Br J Dermatol 1987;117:419–428.PubMedCrossRefGoogle Scholar
  109. 109.
    Holt DR, Kirk SJ, Regan MC, Hurson M, Lindblad WJ, Barbul A. Effect of age on wound healing in healthy human beings. Surgery 1992;112:293–297; discussion 297–298.PubMedGoogle Scholar
  110. 110.
    Castelo-Branco C, Duran M, Gonzalez-Merlo J. Skin collagen changes related to age and hormone replacement therapy. Maturitas 1992;15:113–119.PubMedCrossRefGoogle Scholar
  111. 111.
    Castelo-Branco C, Pons F, Gratacos E, Fortuny A, Vanrell JA, Gonzalez-Merlo J. Relationship between skin collagen and bone changes during aging. Maturitas 1994;18:199–206.PubMedCrossRefGoogle Scholar
  112. 112.
    Dyer DG, Dunn JA, Thorpe SR, et al. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 1993;91:2463–2469.PubMedCrossRefGoogle Scholar
  113. 113.
    Rittie L, Berton A, Monboisse JC, Hornebeck W, Gillery P. Decreased contraction of glycated collagen lattices coincides with impaired matrix metalloproteinase production. Biochem Biophys Res Commun 1999;264:488–492.PubMedCrossRefGoogle Scholar
  114. 114.
    Bernstein EF, Fisher LW, Li K, LeBaron RG, Tan EM, Uitto J. Differential expression of the versican and decorin genes in photoaged and sun-protected skin. Comparison by immunohistochemical and Northern analyses. Lab Invest 1995;72:662–669.PubMedGoogle Scholar
  115. 115.
    Watson RE, Griffiths CE, Craven NM, Shuttleworth CA, Kielty CM. Fibrillin-rich microfibrils are reduced in photo-aged skin: distribution at the dermal-epidermal junction. J Invest Dermatol 1999;112:782–787.PubMedCrossRefGoogle Scholar
  116. 116.
    Bayliss MT. Proteoglycan structure and metabolism during maturation and ageing of human articular cartilage. Biochem Soc Trans 1990;18:799–802.PubMedGoogle Scholar
  117. 117.
    Bank RA, Bayliss MT, Lafeber FP, Maroudas A, Tekoppele JM. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage: he age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J 1998;330: 345–351.PubMedGoogle Scholar
  118. 118.
    DeGroot J, Verzijl N, Bank RA, Lafeber FP, Bijlsma JW, TeKoppele JM. Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of non-enzymatic glycation. Arthritis Rheum 1999;42:1003–1009.PubMedCrossRefGoogle Scholar
  119. 119.
    Adams P, Eyre DR, Muir H. Biochemical aspects of development and ageing of human lumbar intervertebral discs. Rheumatol Rehabil 1977;16:22–29.PubMedCrossRefGoogle Scholar
  120. 120.
    Aigner T, Gresk-Otter KR, Fairbank JC, von der Mark K, Urban JP. Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs. Calcif Tissue Int 1998;63:263–268.PubMedCrossRefGoogle Scholar
  121. 121.
    Nerlich AG, Schleicher ED, Boos N. 1997 Volvo Award winner in basic science studies: immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine 1997;22:2781–2795.CrossRefGoogle Scholar
  122. 122.
    Pokharna HK, Phillips FM. Collagen crosslinks in human lumbar intervertebral disc aging. Spine 1998;23:1645–1648.PubMedCrossRefGoogle Scholar
  123. 123.
    Sztrolovics R, Alini M, Mort JS, Roughley PJ. Age-related changes in hbromodulin and lumican in human intervertebral discs. Spine 1999;24:1765–1771.PubMedCrossRefGoogle Scholar
  124. 124.
    Termine JD. Cellular activity, matrix proteins, and aging bone. Exp Gerontol 1990;25:217–221.PubMedCrossRefGoogle Scholar
  125. 125.
    Dickson IR, Bagga MK. Changes with age in the non-collagenous proteins of human bone. Connect Tissue Res 1985;14:77–85.PubMedCrossRefGoogle Scholar
  126. 126.
    Mbuyi-Muamba JM, Dequeker J. Age and sex variations of bone matrix proteins in Wistar rats. Growth 1983;47:301–315.PubMedGoogle Scholar
  127. 127.
    Duance VC, Crean JK, Sims TJ, et al. Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine 1998;23:2545–2551.PubMedCrossRefGoogle Scholar
  128. 128.
    Fedarko NS, Vetter UK, Robey PG. Age-related changes in bone matrix structure in vitro. Calcif Tissue Int 1995; 56(suppl 1):S41-S43.PubMedGoogle Scholar
  129. 129.
    D’Avis FY, Frazier CR, Shapiro JR, Fedarko NS. Age-related changes in effects of insulin-like growth factor I on human osteoblast-like cells. Biochem J 1997;324:753–760.PubMedGoogle Scholar
  130. 130.
    Nagai N, Qin CL, Nagatsuka H, Inoue M, Ishiwari Y. Age effects on ectopic bone formation induced by purified bone morphogenetic protein. Int J Oral Maxillofac Surg 1999; 28:143–150.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Neal S. Fedarko
  • Jay R. Shapiro

There are no affiliations available

Personalised recommendations