Advertisement

Cell and Molecular Aging

  • Bruce Robert Troen
  • Vincent Joseph Cristofalo

Abstract

Discussions of aging invariably begin by establishing a satisfactory definition for the term aging and the related word senescence. Although the term aging is commonly used to refer to postmaturational processes that lead to diminished homeostasis and increased organismic vulnerability, the more correct term here is senescence. Aging can refer to any time-related process. In this chapter we use senescence and aging interchangeably. Normal aging involves inexorable and universal physiologic changes, whereas usual aging includes age-related diseases. For example, menopause and the decline in renal function represent aspects of normal aging. In contrast, coronary artery disease is an example of usual aging and is not found in all older persons. This approach to aging can utilize a conceptual framework that identifies intrinsic (developmental-genetic) versus extrinsic (stochastic) causes. Accumulating evidence increasingly stresses the importance of both.

Keywords

Human Fibroblast Senescent Cell Replicative Senescence Werner Syndrome Molecular Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cutler RG. Evolutionary persective of human longevity. In: Hazzard WR, Andres R, Bierman EL, et al. (eds) Principles of Geriatric Medicine and Gerontology. McGraw-Hill, New York, 1985:16.Google Scholar
  2. 2.
    National Center for Health Statistics, Hyattsville, MD, 1997.Google Scholar
  3. 3.
    Bureau of the Census. Sixty-five Plus in the United States. Statistical Brief 95,1995.Google Scholar
  4. 4.
    Greville TN, Bayo F, Foster R. United States Life Tables of Causes of Death: 1960–71, vol. 1, no. 5. Technical report.Google Scholar
  5. 5.
    Roush W. Live long and prosper? Science 1996;273:42–46.PubMedGoogle Scholar
  6. 6.
    Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996;273:59–63.PubMedCrossRefGoogle Scholar
  7. 7.
    Weindruch R, Walford RL. Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence. Science 1982;215:1415–1418.PubMedCrossRefGoogle Scholar
  8. 8.
    Yu BP, Masoro EJ, McMahan CA. Nutritional influences on aging of Fischer 344 rats. I. Physical, metabolic, and longevity characteristics. J Gerontol 1985;40:657–670.PubMedCrossRefGoogle Scholar
  9. 9.
    Masoro EJ. Dietary restriction and aging. J Am Geriatr Soc 1993;41:994–999.PubMedGoogle Scholar
  10. 10.
    Weindruch R, Sohal RS. Seminars in medicine of the Beth Israel Deaconess Medical Center: caloric intake and aging. N Engl J Med 1997;337:986–994.PubMedCrossRefGoogle Scholar
  11. 11.
    Dulloo AG, Girardier L. 24-Hour energy expenditure several months after weight loss in the underfed rat: evidence for a chronic increase in whole-body metabolic efficiency. J Obestet Relat Metab Disord 1993;17:115–123.Google Scholar
  12. 12.
    Gonzales-Pacheco DM, Buss WC, Koehler KM, Woodside WF, Alpert SS. Energy restriction reduces metabolic rate in adult male Fisher-344 rats. J Nutr 1993;123:90–97.PubMedGoogle Scholar
  13. 13.
    McCarter R, Masoro EJ, Yu BP. Does food restriction retard aging by reducing the metabolic rate? Am J Physiol 1985;248:E488–E490.PubMedGoogle Scholar
  14. 14.
    Lane MA, Baer DJ, Rumpier WV, et al. Calorie restriction lowers body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc Natl Sci USA 1996;93:4159–4164.CrossRefGoogle Scholar
  15. 15.
    Ramsey JJ, Roecker EB, Weindruch R, Kemnitz JW. Energy expenditure of adult male rhesus monkeys during the first 30 months of dietary restriction. Am J Physiol 1997;272:E901–E907.PubMedGoogle Scholar
  16. 16.
    Verdery RB, Ingram DK, Roth GS, Lane MA. Caloric restriction increases HDL2 levels in rhesus monkeys (Macaca mulatta). Am J Physiol 1997;273:E714–E719.PubMedGoogle Scholar
  17. 17.
    Lane MA, Ingram DK, Ball SS, Roth GS. Dehy-droepiandrosterone sulfate: a biomarker of primate aging slowed by calorie restriction. J Clin Endocrinol Metab 1997;82:2093–2096.PubMedCrossRefGoogle Scholar
  18. 18.
    Gompertz B. On the nature of the function expressive of the law of human mortality and a new mode of determining life contingencies. Philos Trans R Soc Lond 1825;115:513.CrossRefGoogle Scholar
  19. 19.
    Rosenberg HM, Ventura SJ, Maurer JD, et al. Births and deaths: United States, 1995. Monthly Vital Stat Res 1996;45:31–33.Google Scholar
  20. 20.
    Riggs BL, Melton LD. Involutional osteoporosis. N Engl J Med 1986;314:1676–1686.PubMedCrossRefGoogle Scholar
  21. 21.
    Shock NW, Greulich RC, Andres R, et al. Normal Human Aging: The Baltimore Longitudinal Study of Aging. U.S. Department of Human Services, Washington, DC, 1984.Google Scholar
  22. 22.
    Florini JR. Composition and function of cells and tissues. In: Handbook of Biolochemistry in Aging. CRC Press, Boca Raton, 1981.Google Scholar
  23. 23.
    Strehler BL. In: Time, Cells, and Aging. Academic, San Diego, 1977.Google Scholar
  24. 24.
    Bjorksten J. Cross linkage and the aging process. In: Rothstein M (ed) Theoretical Aspects of Aging. Academic, San Diego, 1974:43.Google Scholar
  25. 25.
    Kohn RR. Aging of animals: possible mechanisms. In: Principles of Mammalian Aging. Prentice-Hall, Engle-wood Cliffs, NJ, 1978.Google Scholar
  26. 26.
    Finch CE. Introduction: definitions and concepts. In: Longevity, Senescence, and the Genome. University of Chicago Press, Chicago, 1990.Google Scholar
  27. 27.
    Schneider EL, Rowe JW. Handbook of the Biology of Aging. Academic Press, San Diego, CA, 92101.Google Scholar
  28. 28.
    Shock NW. Longitudinal studies of aging in humans. In: Finch CE, Schneider EL (eds) Handbook of the Biology of Aging. Van Nostrand Reinhold, New York, 1985:721.Google Scholar
  29. 29.
    Lakatta EG. Changes in cardiovascular function with aging. Eur Heart J 1990;ll(suppl C):22–29.CrossRefGoogle Scholar
  30. 30.
    Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 1985;33:278–285.PubMedGoogle Scholar
  31. 31.
    Adelman RC, Britton GW, Rotenberg S, et al. Endocrine regulation of gene activity in aging animals of different genotypes. In: Bergsma D, Harrison DE (eds) Genetic Effects on Aging. Liss, New York, 1978:355.Google Scholar
  32. 32.
    Brody JA, Brock DB. Epidemiological and statistical characteristics of the United States elderly population. In: Finch CE, Schneider EL (eds) Handbook of the Biology of Aging. Van Nostrand Reinhold, New York, 1985:3.Google Scholar
  33. 33.
    Rose MR, Graves JL Jr. What evolutionary biology can do for gerontology. J Gerontol 1989;44:1327–1329.CrossRefGoogle Scholar
  34. 34.
    Kirkwood TB, Rose MR. Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci 1991;332:15–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Kirkwood TB. Human senescence. Bioessays 1996;18: 1009–1016.PubMedCrossRefGoogle Scholar
  36. 36.
    Katsumata K, Hayakawa M, Tanaka M, Sugiyama S, Ozawa T. Fragmentation of human heart mitochondrial DNA associated with premature aging. Biochem Biophys Res Commun 1994;202:102–110.PubMedCrossRefGoogle Scholar
  37. 37.
    Failla G. The aging process and carcinogenesis. Ann NY Acad Sci 1958;71:1124.PubMedCrossRefGoogle Scholar
  38. 38.
    Szilard L. On the nature of the aging process. Proc Natl Acad Sci USA 1959;45:30.PubMedCrossRefGoogle Scholar
  39. 39.
    Casarett GW. Concept and criteria of radiologic ageing. In: Harris RJ (ed) Cellular Basis and Aetiology of Late Somatic Effects of Ionizing Radiation. Academic, San Diego, 1963:189.Google Scholar
  40. 40.
    Walburg HE. Radiation-induced life-shortening and premature aging. Adv Radiât Biol 1975;5:145.Google Scholar
  41. 41.
    Sacher CA. Life table modification and life prolongation. In: Finch CE, Hayflick L (eds) Handbook of the Biology of Aging. Van Nostrand Reinhold, New York, 1977:582.Google Scholar
  42. 42.
    Lindop PJ, Rotblat J. Long-term effect of a single whole-body exposure of mice to ionizing radiations. Proc R Soc Lond 1961;154:350.CrossRefGoogle Scholar
  43. 43.
    Hart RW, Setlow RB. Correlation between deoxyribonucleic acid excision—repair and life-span in a number of mammalian species. Proc Natl Acad Sci USA 1974;71:2169–2173.PubMedCrossRefGoogle Scholar
  44. 44.
    Hanawalt PC, Gee P, Ho L. DNA repair in differentiating cells in relation to aging. In: Finch CE, Johnson TE (eds) Modecular Biology of Aging. UCLA Symposia on Molecular and Cellular Biology. Liss, New York, 1990:45.Google Scholar
  45. 45.
    Orgel LE. The maintenance of the accuracy of protein synthesis and its relevance to aging. Proc Natl Acad Sci USA 1963;49:517.PubMedCrossRefGoogle Scholar
  46. 46.
    Kristal BS, Yu BP. An emerging hypothesis: synergistic induction of aging by free radicals and Maillard reactions. J Gerontol 1992;47:B107-B114.PubMedCrossRefGoogle Scholar
  47. 47.
    Levine RL, Stadtman ER. Protein modifications with aging. In: Schneider EL, Rowe JW (eds) Handbook of the Biology of Aging. Academic, San Diego, 1996:184–197.Google Scholar
  48. 48.
    Gracy RW, Yuksel KU, Chapman MD, et al. Impaired protein degradation may account for the accumulation of “abnormal” proteins in aging cells. In: Adelman RC, Dekker EE (eds) Modern Aging Research, Modification of Proteins During Aging. Liss, New York, 1985.Google Scholar
  49. 49.
    Reiser KM, Hennessy SM, Last JA. Analysis of age-associated changes in collagen crosslinking in the skin and lung in monkeys and rats. Biochim Biophys Acta 1987;926:339–348.PubMedCrossRefGoogle Scholar
  50. 50.
    Hall DA. Chemical and biochemical changes in aging connective tissues. In: The Aging of Connective Tissue. Academic, San Diego, 1976.Google Scholar
  51. 51.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956;11:298.PubMedCrossRefGoogle Scholar
  52. 52.
    Harman D. The aging process. Proc Natl Acad Sci USA 1981;78:7124–7128.PubMedCrossRefGoogle Scholar
  53. 53.
    Fridovich I. Superoxide dismutases: an adaptation to a paramagnetic gas. J Biol Chem 1989;264:7761–7764.PubMedGoogle Scholar
  54. 54.
    Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996;10:709–720.PubMedGoogle Scholar
  55. 55.
    Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radie Biol Med 1997;22:269–285.CrossRefGoogle Scholar
  56. 56.
    Sohal RS, Svensson I, Sohal BH, Brunk UT. Superoxide anion radical production in different animal species. Mech Ageing Dev 1989;49:129–135.PubMedCrossRefGoogle Scholar
  57. 57.
    . Orr WC, Sohal RS. Extension of life-span by overexpres-sion of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994;263:1128–1130.PubMedCrossRefGoogle Scholar
  58. 58.
    Fleming JE, Miquel J, Cottrell SF, Yengoyan LS, Economos AC. Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontology 1982;28:44–53.PubMedCrossRefGoogle Scholar
  59. 59.
    Linnane AW, Zhang C, Baumer A, Nagley P. Mitochondrial DNA mutation and the ageing process: bioenergy and pharmacological intervention. Mutat Res 1992;275: 195–208.PubMedCrossRefGoogle Scholar
  60. 60.
    Wallace DC. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 1992;256:628–632.PubMedCrossRefGoogle Scholar
  61. 61.
    Ozawa T. Genetic and functional changes in mitochondria associated with aging. Physiol Rev 1997;77:425–464.PubMedGoogle Scholar
  62. 62.
    Katayama M, Tanaka M, Yamamoto H, Ohbayashi T, Nimura Y, Ozawa T. Deleted mitochondrial DNA in the skeletal muscle of aged individuals. Biochem Int 1991;25:47–56.PubMedGoogle Scholar
  63. 63.
    Lee CM, Chung SS, Kaczkowski JM, Weindruch R, Aiken JM. Multiple mitochondrial DNA deletions associated with age in skeletal muscle of rhesus monkeys. J Gerontol 1993;48:B201-B205.PubMedCrossRefGoogle Scholar
  64. 64.
    Melov S, Shoffner JM, Kaufman A, Wallace DC. Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res 1995; 23: 4122–4126. Erratum Nucleic Acids Res 1995;23:493–498.PubMedCrossRefGoogle Scholar
  65. 65.
    Hayakawa M, Torii K, Sugiyama S, Tanaka M, Ozawa T. Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 1991;179:1023–1029.PubMedCrossRefGoogle Scholar
  66. 66.
    Torii K, Sugiyama S, Tanaka M, et al. Aging-associated deletions of human diaphragmatic mitochondrial DNA. Am J Respir Cell Mol Biol 1992;6:543–549.PubMedCrossRefGoogle Scholar
  67. 67.
    Hayakawa M, Hattori K, Sugiyama S, Ozawa T. Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun 1992;189:979–985.PubMedCrossRefGoogle Scholar
  68. 68.
    Hayakawa M, Katsumata K, Yoneda M, Tanaka M, Sugiyama S, Ozawa T. Age-related extensive fragmentation of mitochondrial DNA into minicircles. Biochem Biophys Res Commun 1996; 226: 369–377. Erratum. Biochem Biophys Res Commun 1997;232:832.PubMedCrossRefGoogle Scholar
  69. 69.
    Hayakawa M, Sugiyama S, Hattori K, Takasawa M, Ozawa T. Age-associated damage in mitochondrial DNA in human hearts. Mol Cell Biochem 1993;119:95–103.PubMedCrossRefGoogle Scholar
  70. 70.
    Sugiyama S, Hattori K, Hayakawa M, Ozawa T. Quantitative analysis of age-associated accumulation of mitochondrial DNA with deletion in human hearts. Biochem Biophys Res Commun 1991;180:894–899.PubMedCrossRefGoogle Scholar
  71. 71.
    Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Natl Genet 1992;2:324–329.CrossRefGoogle Scholar
  72. 72.
    Ikebe S, Tanaka M, Ohno K, et al. Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 1990;170: 1044–1048.PubMedCrossRefGoogle Scholar
  73. 73.
    Trounce I, Byrne E, Marzuki S. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet 1989;1:637–639.PubMedCrossRefGoogle Scholar
  74. 74.
    Schapira AH, Cooper JM, Dexter D, Clark IB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 1990;54:823–827.PubMedCrossRefGoogle Scholar
  75. 75.
    . Schapira AH, Mann VM, Cooper IM, et al. Anatomic and disease specificity of NADH CoQ I reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 1990; 55: 2142–2145.PubMedCrossRefGoogle Scholar
  76. 76.
    Sims NR, Finegan JM, Blass JP, Bowen DM, Neary D. Mitochondrial function in brain tissue in primary degenerative dementia. Brain Res 1987;436:30–38.PubMedCrossRefGoogle Scholar
  77. 77.
    . Hoyer S. Senile dementia and Alzheimer’s disease: brain blood flow and metabolism. Prog Neuropsychopharma-col Biol Psychiatry 1986; 10: 447–478.CrossRefGoogle Scholar
  78. 78.
    Beal ME Neurochemistry and toxin models in Huntington’s disease. Curr Opin Neurol 1994;7:542–547.PubMedCrossRefGoogle Scholar
  79. 79.
    Schulz JB, Beal ME Mitochondrial dysfunction in movement disorders. Mech Dev 1996;57:3–20.CrossRefGoogle Scholar
  80. 80.
    Shoffner JM, Brown MD, Torroni A, et al. Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics 1993;17:171–184.PubMedCrossRefGoogle Scholar
  81. 81.
    Lin FH, Lin R, Wisniewski HM, et al. Detection of point mutations in codon 331 of mitochondrial NADH dehydrogenase subunit 2 in Alzheimer’s brains. Biochem Biophys Res Commun 1992;182:238–246.PubMedCrossRefGoogle Scholar
  82. 82.
    Ikebe S, Tanaka M, Ozawa T. Point mutations of mitochondrial genome in Parkinson’s disease. Brain Res Mol Brain Res 1995;28:281–295.PubMedCrossRefGoogle Scholar
  83. 83.
    Ozawa T, Tanaka M, Ikebe S, Ohno K, Kondo T, Mizuno Y. Quantitative determination of deleted mitochondrial DNA relative to normal DNA in parkinsonian striatum by a kinetic PCR analysis. Biochem Biophys Res Commun 1990;172:483–489.PubMedCrossRefGoogle Scholar
  84. 84.
    Ozawa T, Tanaka M, Ino H, et al. Distinct clustering of point mutations in mitochondrial DNA among patients with mitochondrial encephalomyopathies and with Parkinson’s disease. Biochem Biophys Res Commun 1991;176:938–946.PubMedCrossRefGoogle Scholar
  85. 85.
    Ionasescu W, Hart M, DiMauro S, Morales CT. Clinical and morphologic features of a myopathy associated with a point mutation in the mitochondrial tRNA(Pro) gene. Neurology 1994;44:975–977.PubMedCrossRefGoogle Scholar
  86. 86.
    Ozawa T. Mitochondrial cardiomyopathy Herz 1994; 19: 105–118,125.PubMedGoogle Scholar
  87. 87.
    Ozawa T, Tanaka M, Sugiyama S, et al. Patients with idiopathic cardiomyopathy belong to the same mitochondrial DNA gene family of Parkinson’s disease and mitochondrial encephalomyopathy. Biochem Biophys Res Commun 1991;177:518–525.PubMedCrossRefGoogle Scholar
  88. 88.
    Poulton J, Deadman ME, Ramacharan S, Gardiner RM. Germ-line deletions of mtDNA in mitochondrial myopathy. Am J Hum Genet 1991;48:649–653.PubMedGoogle Scholar
  89. 89.
    Yoneda M, Katsumata K, Hayakawa M, Tanaka M, Ozawa T. Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome. Biochem Biophys Res Commun 1995;209:723–729.PubMedCrossRefGoogle Scholar
  90. 90.
    Melov S, Hinerfeld D, Esposito L, Wallace DC. Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nucleic Acids Res 1997;25:974–982.PubMedCrossRefGoogle Scholar
  91. 91.
    Finch CE, Tanzi RE. Genetics of aging. Science 1997;278: 407–411.PubMedCrossRefGoogle Scholar
  92. 92.
    Jazwinski SM. Longevity, genes, and aging. Science 1996; 273:54–59.PubMedCrossRefGoogle Scholar
  93. 93.
    Murakami S, Johnson TE. A genetic pathway conferring life extension and resistance to UV stress in Caenorhab-ditis elegans. Genetics 1996;143:1207–1218.PubMedGoogle Scholar
  94. 94.
    Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997;277: 942–946.PubMedCrossRefGoogle Scholar
  95. 95.
    Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature 1993;366:461–464.PubMedCrossRefGoogle Scholar
  96. 96.
    Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997;278: 1319–1322.PubMedCrossRefGoogle Scholar
  97. 97.
    Fleming JE, Rose MR. Genetics of aging in Drosophila. In: Schneider EL, Rowe JW (eds) Handbook of the Biology of Aging. Academic, San Diego, 1996:74–93.Google Scholar
  98. 98.
    Dudas SP, Arking R. A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J Gerontol A Biol Sci Med Sci 1995;50:B117–B127.PubMedCrossRefGoogle Scholar
  99. 99.
    Rose MR, Vu LN, Park SU, Graves JL Jr. Selection on stress resistance increases longevity in Drosophila melano-gaster. Exp Gerontol 1992;27:241–250.PubMedCrossRefGoogle Scholar
  100. 100.
    Schachter F, Faure-Delanef L, Guenot F, et al. Genetic associations with human longevity at the APOE and ACE loci. Natl Genet 1994;6:29–32.CrossRefGoogle Scholar
  101. 101.
    Martin GM, Turker MS. Genetics of human disease, longevity, and aging. In: Hazzard WR, Andres R, Bierman EL, et al. (eds) Principles of Geriatric Medicine and Gerontology. McGraw-Hill, New York, 1990:22.Google Scholar
  102. 102.
    Brown WT. Genetic diseases of premature aging as models of senescence. Annu Rev Gerontol Geriatr 1990;10:23–42.PubMedGoogle Scholar
  103. 103.
    Goto M, Rubenstein M, Weber J, Woods K, Drayna D. Genetic linkage of Werner’s syndrome to five markers on chromosome 8. Nature 1992;355:735–738.PubMedCrossRefGoogle Scholar
  104. 104.
    Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene. Science 1996;272:258–262.PubMedCrossRefGoogle Scholar
  105. 105.
    Mobbs CV. Neuroendocrinology of aging. In: Schneider EL, Rowe JW (eds) Handbook of the Biology of Aging. Academic, San Diego, 1996:234–282.Google Scholar
  106. 106.
    Wise PM, Krajnak KM, Kashon ML. Menopause: the aging of multiple pacemakers. Science 1996;273:67–70.PubMedCrossRefGoogle Scholar
  107. 107.
    Denckla WD. A time to die. Life Sci 1975;16:31–44.PubMedCrossRefGoogle Scholar
  108. 108.
    Gilad GM, Gilad VH. Age-related reductions in brain cholinergic and dopaminergic indices in two rat strains differing in longevity. Brain Res 1987;408:247–250.PubMedCrossRefGoogle Scholar
  109. 109.
    Cotzias GC, Miller ST, Tang LC, Papavasiliou PS. Levodopa, fertility, and longevity. Science 1977;196:549–551.PubMedCrossRefGoogle Scholar
  110. 110.
    Knoll J. (-)Deprenyl-medication: a strategy to modulate the age-related decline of the striatal dopaminergic system. J Am Geriatr Soc 1992; 40: 839–847.PubMedGoogle Scholar
  111. 111.
    Kitani K, Kanai S, Sato Y, Ohta M, Ivy GO, Carrillo MC. Chronic treatment of (-)deprenyl prolongs the life span of male Fischer 344 rats: further evidence. Sci 1993;52:281–288.Google Scholar
  112. 112.
    Milgram NW, Racine RJ, Nellis P, Mendonca A, Ivy GO. Maintenance on L-deprenyl prolongs life in aged male rats. Life Sci 1990;47:415–420.PubMedCrossRefGoogle Scholar
  113. 113.
    Burnet M. Intrinsic Mutagenesis: A Genetic Approach for Aging. Wiley, New York, 1974.CrossRefGoogle Scholar
  114. 114.
    Walford RL. Immunologic theory of aging: current status. Fed Proc 1974;33:2020–2027.PubMedGoogle Scholar
  115. 115.
    Miller RA. The aging immune system: primer and prospectus. Science 1996;273:70–74.PubMedCrossRefGoogle Scholar
  116. 116.
    Yunis EJ, Salazar M. Genetics of life span in mice. Genetica 1993;91:211–223.PubMedCrossRefGoogle Scholar
  117. 117.
    Hayflick L, Moorhead PS. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965;37:614–636.PubMedCrossRefGoogle Scholar
  118. 118.
    Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M, Francz PI. Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci USA 1988;85:5112–5116.PubMedCrossRefGoogle Scholar
  119. 119.
    Matsumura T, Zerrudo Z, Hayflick L. Senescent human diploid cells in culture: survival, DNA synthesis and morphology. J Gerontol 1979;34:328–334.PubMedCrossRefGoogle Scholar
  120. 120.
    Pignolo RJ, Rotenberg MO, Cristofalo VJ. Alterations in contact and density-dependent arrest state in senescent WI-38 cells. In Vitro Cell Dev Biol Anim 1994;30A:471–476.PubMedCrossRefGoogle Scholar
  121. 121.
    Cristofalo VJ, Palaxxo R, Charpentier RL. Limited lifespan of human fibroblasts in vitro: metabolic time or replications? In: Adelman RC, Roberts J, Baker GT, et al. (eds) Neural Regulatory Mechanisms During Aging. Liss, New York, 1980:203.Google Scholar
  122. 122.
    Ponten J. Aging properties of glia. In: Bourliere F, Courtois Y, Macieira-Coelho A, et al (eds) Molecular and Cellular Mechanisms of Aging. INSERM, Paris, 1973:53.Google Scholar
  123. 123.
    Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975;6:331–343.PubMedCrossRefGoogle Scholar
  124. 124.
    Bierman EL. The effect of donor age on the in vitro life span of cultured human arterial smooth-muscle cells. In Vitro 1978;14:951–955.PubMedCrossRefGoogle Scholar
  125. 125.
    Tassin J, Malaise E, Courtois Y Human lens cells have an in vitro proliferative capacity inversely proportional to the donor age. Exp Cell Res 1979;123:388–392.PubMedCrossRefGoogle Scholar
  126. 126.
    Mueller SN, Rosen EM, Levine EM. Cellular senescence in a cloned strain of bovine fetal aortic endothelial cells. Science 1980;207:889–891.PubMedCrossRefGoogle Scholar
  127. 127.
    Tice RR, Schneider EL, Kram D, Thorne P. Cytokinetic analysis of the impaired proliferative response of peripheral lymphocytes from aged humans to phytohemagglu-tinin. J Exp Med 1979;149:1029–1041.PubMedCrossRefGoogle Scholar
  128. 128.
    Harrison DE. Cell and tissue transplantation: a means of studying the aging process. In: Finch CE, Schneider EL (eds) Handbook of the Biology of Aging. Van Nostrand Reinhold, New York, 1985:332.Google Scholar
  129. 129.
    Olsson L, Ebbesen P. Ageing decreases the activity of epidermal G1 and G2 inhibitors in mouse skin independent of grafting on old or young recipients. Exp Gerontol 1977;12:59–62.PubMedCrossRefGoogle Scholar
  130. 130.
    Rohme D. Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci USA 1981;78:5009–5013.PubMedCrossRefGoogle Scholar
  131. 131.
    Martin GM, Sprague CA, Epstein CJ. Replicative life-span of cultivated human cells: effects of donor’s age, tissue, and genotype. Lab Invest 1970;23:86–92.PubMedGoogle Scholar
  132. 132.
    Pignolo RJ, Masoro EJ, Nichols WW, Bradt CI, Cristofalo VJ. Skin fibroblasts from aged Fischer 344 rats undergo similar changes in replicative life span but not immortalization with caloric restriction of donors. Exp Cell Res 1992;201:16–22.PubMedCrossRefGoogle Scholar
  133. 133.
    Schneider EL, Mitsui Y The relationship between in vitro cellular aging and in vivo human age. Proc Natl Acad Sci USA 1976;73:3584–3588.PubMedCrossRefGoogle Scholar
  134. 134.
    Le Guilly Y, Simon M, Lenoir P, Bourel M. Long-term culture of human adult liver cells: morphological changes related to in vitro senescence and effect of donor’s age on growth potential. Gerontologia 1973;19:303–313.PubMedCrossRefGoogle Scholar
  135. 135.
    Wille JJ Jr, Pittelkow MR, Shipley GD, Scott RE. Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: clonal analyses, growth kinetics, and cell cycle studies. J Cell Physiol 1984;121:31–44.PubMedCrossRefGoogle Scholar
  136. 136.
    Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci USA 1998;95:10614–10619.PubMedCrossRefGoogle Scholar
  137. 137.
    Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 1995;92:9363–9367.PubMedCrossRefGoogle Scholar
  138. 137a.
    Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ. Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 2000;257:162–171.PubMedCrossRefGoogle Scholar
  139. 138.
    Rubin H. Cell aging in vivo and in vitro. Mech Ageing Dev 1997;98:1–35.PubMedCrossRefGoogle Scholar
  140. 139.
    Phillips PD, Kuhnle E, Cristofalo VJ. Progressive loss of the proliferative response of senescing WI-38 cells to platelet-derived growth factor, epidermal growth factor, insulin transferrin, and dexamethasone. J Gerontol 1984; 39:11–17.PubMedCrossRefGoogle Scholar
  141. 140.
    Phillips PD, Kuhnle E, Cristofalo VJ. [125I]EGF binding ability is stable throughout the replica tive life-span of WI-38 cells. J Cell Physiol 1983;114:311–316.PubMedCrossRefGoogle Scholar
  142. 141.
    Gerhard GS, Phillips PD, Cristofalo VJ. EGF- and PDGF-stimulated phosphorylation in young and senescent WI-38 cells. Exp Cell Res 1991;193:87–92.PubMedCrossRefGoogle Scholar
  143. 142.
    Mori S, Kawano M, Kanzaki T, Morisaki N, Saito Y, Yoshida S. Decreased expression of the platelet-derived growth factor beta-receptor in fibroblasts from a patient with Werner’s syndrome. Eur J Clin Invest 1993;23: 161–165.PubMedCrossRefGoogle Scholar
  144. 143.
    Carlin C, Phillips PD, Brooks-Frederich K, Knowles BB, Cristofalo VJ. Cleavage of the epidermal growth factor receptor by a membrane-bound leupeptin sensitive protease active in nonionic detergent lysates of senescent but not young human diploid fibroblasts. J Cell Physiol 1994;160:427–434.PubMedCrossRefGoogle Scholar
  145. 144.
    Sell C, Ptasznik A, Chang CD, Swantek J, Cristofalo VJ, Baserga R. IGF-1 receptor levels and the proliferation of young and senescent human fibroblasts. Biochem Biophys Res Commun 1993;194:259–265.PubMedCrossRefGoogle Scholar
  146. 145.
    Phillips PD, Pignolo RJ, Cristofalo VJ. Insulin-like growth factor-1: specific binding to high and low affinity sites and mitogenic action throughout the life span of WI-38 cells. J Cell Physiol 1987;133:135–143.PubMedCrossRefGoogle Scholar
  147. 146.
    Ferber A, Chang C, Sell C, et al. Failure of senescent human fibroblasts to express the insulin-like growth factor-1 gene. J Biol Chem 1993;268:17883–17888.PubMedGoogle Scholar
  148. 147.
    Doggett DL, Rotenbert MO, Pignolo RF, Phillips PD, Cristofalo VJ. Differential gene expression between young and senescent, quiescent WI-38 cells. Mech Ageing Dev 1992;65:239–255.PubMedCrossRefGoogle Scholar
  149. 148.
    Linskens MH, Feng J, Andrews WH, et al. Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res 1995;23:3244–3251.PubMedCrossRefGoogle Scholar
  150. 149.
    Mur ano S, Thweatt R, Shmookler RR, Jones RA, Moerman EJ, Goldstein S. Diverse gene sequences are overex-pressed in Werner syndrome fibroblasts undergoing premature replicative senescence. Mol Cell Biol 1991;11:3905–3914.Google Scholar
  151. 150.
    Pignolo RJ, Cristofalo VJ, Rotenbert MO. Senescent WI-38 cells fail to express EPC-1 gene induced in young cells upon entry into the G0 state. J Biol Chem 1993;268:8949–8957.PubMedGoogle Scholar
  152. 151.
    Goodman L, Stein GH. Basal and induced amounts of interleukin-6 mRNA decline progressively with age in human fibroblasts. J Biol Chem 1994;269:19250–19255.PubMedGoogle Scholar
  153. 152.
    Seshadri T, Campisi I. Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science 1990;247:205–209.PubMedCrossRefGoogle Scholar
  154. 153.
    De Tata V, Ptasznik A, Cristofalo VJ. Effect of the tumor promoter phorbol 12-myristate 13-acetate (PMA) on proliferation of young and senescent WI-38 human diploid fibroblasts. Exp Cell Res 1993;205:261–269.PubMedCrossRefGoogle Scholar
  155. 154.
    Phillips PD, Pignolo RJ, Nishikura K, Cristofalo VJ. Renewed DNA synthesis in senescent WI-38 cells by expression of an inducible chimeric c-fos construct. J Cell Physiol 1992;151:206–212.PubMedCrossRefGoogle Scholar
  156. 155.
    Rose DW, McCabe G, Feramisco JR, Adler M. Expression of c-fos and AP-I activity in senescent human fibroblasts is not sufficient for DNA synthesis. J Cell Biol 1992;119: 1405–1411.PubMedCrossRefGoogle Scholar
  157. 156.
    Oshima J, Campis J, Tannock TC, Martin GM. Regulation of c-fos expression in senescing Werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors. J Cell Physiol 1995;162:277–283.PubMedCrossRefGoogle Scholar
  158. 157.
    Afshari CA, Bivins HM, Barrett JC. Utilization of a fos-lacZ plasmid to investigate the activation of c-fos during cellular senescence and okadaic acid-induced apoptosis. J Gerontol 1994;49:13263–13269.CrossRefGoogle Scholar
  159. 158.
    Lucibello FC, Brusselbach S, Sewing A, Muller R. Suppression of the growth factor-mediated induction of c-fos and down-modulation of AP-1 -binding activity are not required for cellular senescence. Oncogene 1993;8:1667–1672.PubMedGoogle Scholar
  160. 159.
    Dean R, Kim SS, Delgado D. Expression of c-myc oncogene in human fibroblasts during in vitro senescence. Biochem Biophys Res Commun 1986;135:105–109.PubMedCrossRefGoogle Scholar
  161. 160.
    Delgado D, Raymond L, Dean R. C-ras expression decreases during in vitro senescence in human fibroblasts. Biochem Biophys Res Commun 1986;137:917–921.PubMedCrossRefGoogle Scholar
  162. 161.
    Cristofalo VJ, Phillips PD, Sorger T, Gerhard G. Alterations in the responsiveness of senescent cells to growth factors. J Gerontol 1989;44:55–62.PubMedCrossRefGoogle Scholar
  163. 162.
    Praeger FC, Gilchrest BA. Influence of increased extracellular calcium concentration and donor age on density-dependent growth inhibition of human fibroblasts. Soc Exp Biol Med 1986;182:315–321.CrossRefGoogle Scholar
  164. 163.
    Brooks-Frederich KM, Cianciarulo FL, Rittling SR, Cristofalo VJ. Cell cycle-dependent regulation of Ca2+ in young and senescent WI-38 cells. Exp Cell Res 1993;205: 412–415.PubMedCrossRefGoogle Scholar
  165. 164.
    Takahashi Y, Yoshida T, Takashima S. The regulation of intracellular calcium ion and pH in young and old fibroblast cells (WI-38). J Gerontol 1992;47:1365–1370.CrossRefGoogle Scholar
  166. 165.
    Blumenthal EJ, Miller AC, Stein GH, Malkinson AM. Serine/threonine protein kinases and calcium-dependent protease in senescent IMR-90 fibroblasts. Mech Ageing Dev 1993;72:13–24.PubMedCrossRefGoogle Scholar
  167. 166.
    Chang ZF, Huang D Y Decline of protein kinase C activation in response to growth stimulation during senescence of IMR-90 human diploid fibroblasts. Biochem Biophys Res Commun 1994;200:16–27.PubMedCrossRefGoogle Scholar
  168. 167.
    Campisi J, Dimri G, Hara E. Control of replicative senescence. In: Schneider EL, Rowe JW (eds) Handbook of the Biology of Aging. Academic, San Diego, 1996:121–149.Google Scholar
  169. 168.
    Papaconstantinou J, Reisner PD, Lui L, Kuninger DT. Mechanisms of altered gene expression with aging. In: Schneider EL, Rowe JW (eds) Handbook of the Biology of Aging. Academic, San Diego, 1996:150–183.Google Scholar
  170. 169.
    Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM. Role of ceramide in cellular senescence. J Biol Chem 1995;270:30701–30708.PubMedCrossRefGoogle Scholar
  171. 170.
    Dbaibo GS, Pushkareva MY, Jayadev S, et al. Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sci USA 1995;92:1347–1351.PubMedCrossRefGoogle Scholar
  172. 171.
    Harley CB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res 1991;256:271–282.PubMedCrossRefGoogle Scholar
  173. 172.
    Greider CW. Telomeres, telomerase and senescence. Bioessays 1990;12:363–369.PubMedCrossRefGoogle Scholar
  174. 173.
    Allsopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992;89:10114–10118.PubMedCrossRefGoogle Scholar
  175. 174.
    Chang E, Harley CB. Telomere length and replicative aging in human vascular tissues. Proc Natl Acad Sci USA 1995;92:11190–11194.PubMedCrossRefGoogle Scholar
  176. 175.
    Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. 1990;345:458–460.Google Scholar
  177. 176.
    Lindsey J, McGill NI, Lindsey LA, Green DK, Cooke HJ. In vivo loss of telomeric repeats with age in humans. Mutat Res 1991;256:45–48.PubMedCrossRefGoogle Scholar
  178. 177.
    Vaziri H, Schachter F, Uchida I, et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 1993;52:661–667.PubMedGoogle Scholar
  179. 178.
    Sugihara S, Mihara K, Marunouchi T, Inoue H, Namba M. Telomere elongation observed in immortalized human fibroblasts by treatment with 60Co gamma rays or 4-nitroquinoline 1-oxide. Hum Genet 1996;97:1–6.PubMedCrossRefGoogle Scholar
  180. 179.
    Counter CM, Hirte HW, Bacchetti S, Harley CB. Telomerase activity in human ovarian carcinoma. Proc Natl Acad Sci USA 1994;91:2900–2904.PubMedCrossRefGoogle Scholar
  181. 180.
    Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 1995;14:4240–4248.PubMedGoogle Scholar
  182. 181.
    Broccoli D, Young JW, de Lange T. Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci USA 1995;92:9082–9086.PubMedCrossRefGoogle Scholar
  183. 182.
    Chin CP, Dragowska W, Kim NW, Vaziri H, et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 1996;14:239–248.CrossRefGoogle Scholar
  184. 183.
    Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S. Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 1995;85:2315–2320.PubMedGoogle Scholar
  185. 184.
    Wright WE, Brasiskyte D, Piatyszek MA, Shay JW. Experimental elongation of telomeres extends the lifespan of immortal x normal cell hybrids. EMBO J 1996;15:1734–1741.PubMedGoogle Scholar
  186. 185.
    Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998;279:349–352.PubMedCrossRefGoogle Scholar
  187. 185a.
    Rudolph KL, Chang S, Lee H-W, Blasco M, Gottlieb GJ, Greider C, DePinho RA. Longevity, stress response, and cancer in aging telomerase-defkient mice. Cell 1999;96: 701–712.PubMedCrossRefGoogle Scholar
  188. 186.
    Karlsson C, Stenman G, Vojta PJ, et al. Escape from senescence in hybrid cell clones involves deletions of two regions located on human chromosome Iq. Cancer Res 1996;56:241–245.PubMedGoogle Scholar
  189. 187.
    Sugawara O, Oshimura M, Koi M, Annab LA, Barrett JC. Induction of cellular senescence in immortalized cells by human chromosome 1. Science 1990;247:707–710.PubMedCrossRefGoogle Scholar
  190. 188.
    Uejima H, Mitsuya K, Kugoh H, Horikawa I, Oshimura M. Normal human chromosome 2 induces cellular senescence in the human cervical carcinoma cell line SiHa. Genes Chromosomes Cancer 1995;14:120–127.PubMedCrossRefGoogle Scholar
  191. 189.
    Miyamoto S, Nishida M, Miwa K, et al. Increased actin cable organization after single chromosome introduction: association with suppression of in vitro cell growth rather than tumorigenic suppression. Mol Carcinog 1994;10:88–96.PubMedCrossRefGoogle Scholar
  192. 190.
    Ohmura H, Tahara H, Suzuki M, et al. Restoration of the cellular senescence program and repression of telomerase by human chromosome 3. Jpn J Cancer Res 1995;86:899–904.PubMedCrossRefGoogle Scholar
  193. 191.
    Ning Y, Weber JL, Killary AM, Ledbetter DH, Smith JR, Pereira-Smith OM. Genetic analysis of indefinite division in human cells: evidence for a cell senescence-related gene(s) on human chromosome 4. Proc Natl Acad Sci USA 1991;88:5635–5639.PubMedCrossRefGoogle Scholar
  194. 192.
    Sandhu AK, Hubbard K, Kaur GP, Jha KK, Ozer HL, Athwal RS. Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6. Proc Natl Acad Sci USA 1994;91:5498–5502.PubMedCrossRefGoogle Scholar
  195. 193.
    Nakabayashi K, Ogata T, Fujii M, et al. Decrease in amplified telomeric sequences and induction of senescence markers by introduction of human chromosome 7 or its segments in SUSM-1. Exp Cell Res 1997;235:345–353.PubMedCrossRefGoogle Scholar
  196. 194.
    Ogata T, Ayusawa D, Namba M, Takahashi E, Oshimura M, Oishi M. Chromosome 7 suppresses indefinite division of nontumorigenic immortalized human fibroblast cell lines KMST-6 and SUSM-1. Mol Cell Biol 1993;13: 6036–6043.PubMedGoogle Scholar
  197. 195.
    Ogata T, Oshimura M, Namba M, Fujii M, Oishi M, Ayusawa D. Genetic complementation of the immortal phenotype in group D cell lines by introduction of chromosome 7. Jpn J Cancer Res 1995;86:35–40.PubMedCrossRefGoogle Scholar
  198. 196.
    Sasaki M, Honda T, Yamada H, Wake N, Barrett IC, Oshimura M. Evidence for multiple pathways to cellular senescence. Cancer Res 1994;54:6090–6093.PubMedGoogle Scholar
  199. 197.
    Wang XW, Lin X, Klein CB, Bhamra RK, Lee YW, Costa M. A conserved region in human and Chinese hamster X chromosomes can induce cellular senescence of nickel-transformed Chinese hamster cell lines. Carcinogenesis 1992;13:555–561.PubMedCrossRefGoogle Scholar
  200. 198.
    Pereira-Smith OM, Smith JR. Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proc Natl Acad Sci USA 1988;85: 6042–6046.PubMedCrossRefGoogle Scholar
  201. 199.
    Smith IR, Pereira-Smith OM. Replicative senescence: implications for in vivo aging and tumor suppression. Science 1996;273:63–67.PubMedCrossRefGoogle Scholar
  202. 200.
    Ryan PA, Maher VM, McCormick JJ. Failure of infinite life span human cells from different immortality complementation groups to yield finite life span hybrids. J Cell Physiol 1994;159:151–160.PubMedCrossRefGoogle Scholar
  203. 201.
    Shay IW, Wright WE, Werbin H. Toward a molecular understanding of human breast cancer: a hypothesis. Breast Cancer Res Treat 1993;25:83–94.PubMedCrossRefGoogle Scholar
  204. 202.
    Campisi J. Aging and cancer: the double-edged sword of replicative senescence. J Am Geriatr Soc 1997;45:482–488.PubMedGoogle Scholar
  205. 203.
    Atadja P, Wong H, Garkavtsev I, Veillette C, Riabowol K. Increased activity of p53 in senescing fibroblasts. Proc Natl Acad Sci USA 1995;92:8348–8352.PubMedCrossRefGoogle Scholar
  206. 204.
    Stein GH, Beeson M, Gordon L. Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 1990;249:666–669.PubMedCrossRefGoogle Scholar
  207. 205.
    Ozer HL, Banga SS, Dasgupta T, et al. SV40-mediated immortalization of human fibroblasts. Exp Gerontol 1996;31:303–310.PubMedCrossRefGoogle Scholar
  208. 206.
    Shay IW, Pereira-Smith OM, Wright WE. A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 1991;196:33–39.PubMedCrossRefGoogle Scholar
  209. 207.
    Hara E, Tsurui H, Shinozaki A, Nakada S, Oda K. Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem Biophys Res Commun 1991;179:528–534.PubMedCrossRefGoogle Scholar
  210. 208.
    Afshari CA, Nichols MA, Xiong Y, Mudryj M. A role for a p21-E2F interaction during senescence arrest of normal human fibroblasts. Cell Growth Differ 1996;7:979–988.PubMedGoogle Scholar
  211. 209.
    Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 1994;211: 90–98.PubMedCrossRefGoogle Scholar
  212. 210.
    Tahara H, Sato E, Noda A, Ide T. Increase in expression level of p21 sdi I/cip I/wafl with increasing division age in both normal and SV40-transformed human fibroblasts. Oncogene 1995;10:835–840.PubMedGoogle Scholar
  213. 211.
    Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor pi 6 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 1996;93: 13742–13747.PubMedCrossRefGoogle Scholar
  214. 212.
    Palmero I, McConnell B, Parry D, et al. Accumulation of p161NK4a in mouse fibroblasts as a function of replicative sensecence and not of retinoblastoma gene status. Oncogene 1997;15:495–503.PubMedCrossRefGoogle Scholar
  215. 213.
    Reznikoff CA, Yeager TR, Belair CD, Savelieva E, Puthenveettil JA, Stadler WM. Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepi-thelial cells. Cancer Res 1996;56:2886–2890.PubMedGoogle Scholar
  216. 214.
    Brown JP, Wei W, Sedivy JM. Bypass of senescence after disruption of p21CIPl/WAFl gene in normal diploid human fibroblasts. Science 1997;277:831–834.PubMedCrossRefGoogle Scholar
  217. 215.
    Yang L, Didenko W, Noda A, et al. Increased expression of p21 Sdi I in adrenocortical cells when they are placed in culture. Exp Cell Res 1995;221:126–131.PubMedCrossRefGoogle Scholar
  218. 216.
    Medcalf AS, Klein-Szanto AJ, Cristofalo VJ. Expression of p21 is not required for senescence of human fibroblasts. Cancer Res 1996;56:4582–4585.PubMedGoogle Scholar
  219. 217.
    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997;88:593–602.PubMedCrossRefGoogle Scholar
  220. 218.
    Vogt M, Haggblom C, Yeargin J, Christiansen-Weber T, Haas M. Independent induction of senescence by p16 lNK4a and p21 CIPI in spontaneously immortalized human fibroblasts. Cell Growth Differ 1998;9:139–146.PubMedGoogle Scholar
  221. 219.
    Afshari CA, Vojta PJ, Annab LA, Futreal PA, Willard TB, Barrett JC. Investigation of the role of GUS cell cycle mediators in cellular senescence. Exp Cell Res 1993;209: 231–237.PubMedCrossRefGoogle Scholar
  222. 220.
    Lockshin RA, Zakeri Z. Programmed cell death and apo-ptosis. In: Tomei LD, Cope FO (eds) Apoptosis: The Molecular Basis of Cell Death. Cold Spring Harbor Laboratory Press, Plainview, NY, 1991:47–60.Google Scholar
  223. 221.
    Ellit SE, Yuan JY, Horvits HR. Mechanisms and functions of cell death. Annu Rev Cell Biol 1991;7:663–698.CrossRefGoogle Scholar
  224. 222.
    Hengartner MO, Horvitz HR. Celegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994;76:665–676.PubMedCrossRefGoogle Scholar
  225. 223.
    Yuan JY, Horvitz HR. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 1990;138:33–41.PubMedCrossRefGoogle Scholar
  226. 224.
    Nagata S. Apoptosis by death factor. Cell 1997;88:355–365.PubMedCrossRefGoogle Scholar
  227. 225.
    White E. Life, death, and the pursuit of apoptosis. Genes Dev 1996;10:1–15.PubMedCrossRefGoogle Scholar
  228. 226.
    Wang E. Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res 1995;55:2284–2292.PubMedGoogle Scholar
  229. 227.
    Grasl-Kraupp B, Bursch W, Ruttkay-Nedecky B, Wagner A, Lauer B, Schulte-Hermann R. Food restriction eliminates preneoplastic cells through apoptosis and antagonizes carcinogenesis in rat liver. Proc Natl Acad Sci USA 1994;91:9995–9999.PubMedCrossRefGoogle Scholar
  230. 228.
    James SJ, Muskhelishvili L. Rates of apoptosis and proliferation vary with caloric intake and may influence incidence of spontaneous hepatoma in C57BL/6 × C3H F1 mice. Cancer Res 1994:5508–5510.Google Scholar
  231. 229.
    Warner HR, Fernandes G, Wang E. A unifying hypothesis to explain the retardation of aging and tumorigenesis by caloric restriction. J Gerontol 1995;50a:13017–13109.Google Scholar
  232. 230.
    Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997;88:347–354.PubMedCrossRefGoogle Scholar
  233. 231.
    Luan X, Zhao W, Chandrasekar B, Fernandes G. Calorie restriction modulates lymphocyte subset phenotype and increases apoptosis in MRL/Ipr mice. Immunol Lett 1995;47:181–186.PubMedCrossRefGoogle Scholar
  234. 232.
    Zhou T, Edwards CK, Mountz JD. Prevention of age-related T cell apoptosis defect in CD2-fas-transgenic mice. J Exp Med 1995;182:129–137.PubMedCrossRefGoogle Scholar
  235. 233.
    Warner HR, Hodes RJ, Pocinki K. What does cell death have to do with aging? J Am Geriatr Soc 1997;45:1140–1146.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Bruce Robert Troen
  • Vincent Joseph Cristofalo

There are no affiliations available

Personalised recommendations