Advertisement

On Regression Experiment Design in the Presence of Systematic Error

  • S. M. Ermakov
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 51)

Abstract

Different approaches to experimental design in the presence of systematic error are considered. Randomisation of designs allows us to study the problems from a unified viewpoint. Some new results concerning random replication in the linear regression model are elucidated.

Keywords

regression linear model randomisation systematic error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Box, G.E.P. and Hunter, W.G. (1959). A basis for the selection of a response surface design. J. American Statist. Assoc. 54, 622–654.zbMATHCrossRefGoogle Scholar
  2. Ermakov, S.M. (1970). On the optimal unbiased design of regression experiments. Trudy Math. Inst., Academy of Sciences 3, 252–258 (Russian).MathSciNetGoogle Scholar
  3. Ermakov, S.M. (1915) Monte-Carlo Techniques and Related Problems. Moscow: Nauka (in Russian).Google Scholar
  4. Ermakov, S.M. (1989). Random interpolation in the theory of experimental design. Comp. Stat. & Data Anal. 8, 75–80.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Ermakov, S.M. and Makhmudov, A.A. (1977). On regression designs minimising a systematic error. Zavodskaya Laboratoria 7, 854–858 (in Russian).Google Scholar
  6. Ermakov, S.M. and Melas, V.B. (1995). Design and Analysis of Simulation Experiments. Dordrecht: Kluwer Academic Publishers.zbMATHGoogle Scholar
  7. Ermakov, S.M. and Schwabe, R. (1999). On randomizing estimators in linear regression models. Preprint Nr.A/5–99 Fachbereich Math. und Informatik, Frei Universitat Berlin, Serie A-Mathematik, 1999.Google Scholar
  8. Ermakov, S.M. and Sedunov, E.V. (1974). On unbiased regression designs in finite dimensional spaces of functions. Vestnik LGU 1, 12–20.MathSciNetGoogle Scholar
  9. Ermakov, S.M. and Zolotukhin, V.G. (1960). Polynomial approximations and Monte-Carlo method. Probability Theory and its Applic. 5, 473–476.zbMATHGoogle Scholar
  10. Haber, S. (1968). A combination of Monte-Carlo and classical methods for evaluating multiple integrals. Bull. Amer. Math. Soc. 74, 683–686.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • S. M. Ermakov
    • 1
  1. 1.Department of Statistical ModellingSt. Petersburg State UniversitySt PetersburgRussia

Personalised recommendations