Advertisement

A Note on Optimal Bounded Designs

  • Michael Sahm
  • Rainer Schwabe
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 51)

Abstract

An equivalence theorem is formulated to characterize optimal designs with general prespecified direct constraints on the design intensity. As an application locally optimal designs are obtained with bounded intensity for the logistic regression model. Moreover, it is shown that, for additive models, optimal marginally bounded designs can be generated from their optimal counterparts in the corresponding marginal models.

Keywords

constrained design equivalence theorem optimal design logistic regression bounded design intensity additive model marginal design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cook, R.D. and Fedorov, V.V. (1995). Constrained optimization of experimental design. Statistics 28, 129–178.MathSciNetCrossRefGoogle Scholar
  2. Cook, R.D. and Thibodeau, L.A. (1980). Marginally restricted D-optimal designs. J. Amer Statist. Assoc. 75, 366–371.MathSciNetzbMATHGoogle Scholar
  3. Dette, H. and Sahm, M. (1997). E-optimal designs for the double exponential model. In MODA 5 — Advances in Model-Oriented Data Analysis and Experimental Design, Eds A.C. Atkinson, L. Pronzato and H.R Wynn, pp. 11–20. Heidelberg: Physica-Verlag.Google Scholar
  4. Fedorov, V.V (1972). Theory of Optimal Experiments. New York: Academic Press.Google Scholar
  5. Fedorov, V.V. (1989). Optimal design with bounded density: Optimization algorithms of the exchange type. J. Statist. Plann. Inference 22, 1–13.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Fedorov, V.V. and Hackl, P. (1997). Model-Oriented Design of Experiments. Lecture Notes in Statistics 125. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  7. Kiefer, J. (1959). Optimal experimental designs. J. R. Statist. Soc. B 21, 272–304.MathSciNetzbMATHGoogle Scholar
  8. Müller, W.G. (1998). Collecting Spatial Data. Heidelberg: Physica-Verlag.Google Scholar
  9. Schwabe R. (1996). Optimum Designs for Multi-Factor Models. Lecture Notes in Statistics 113. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  10. Schwabe R. and Wierich W. (1995). D-optimal designs of experiments with non-interacting factors. J. Statist. Plann. Inference 44, 371–384.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Sitter, R.R. and Wu, C.F.J. (1993). Optimal designs for binary response experiments: Fieller-, D- and A-criteria. Scand. J. Statist. 20, 329–341.MathSciNetzbMATHGoogle Scholar
  12. Whittle, P. (1973). Some general points in the theory of optimal experimental design. J. R. Statist. Soc. B 35, 916–921.MathSciNetGoogle Scholar
  13. Wierich, W. (1985), Optimum designs under experimental constraints for a covariate model and an intra-class regression model. J. Statist. Plann. Inference 12, 27–40MathSciNetzbMATHCrossRefGoogle Scholar
  14. Wynn, H.R (1982). Optimum submeasures with applications to finite population sampling. In Statistical Decision Theory and Related Topics III. Proc. Third Purdue Symp. Vol. 2., Eds S.S. Gupta and J.O. Berger, pp. 485–495. New York: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Michael Sahm
    • 1
  • Rainer Schwabe
    • 2
  1. 1.Institute for Applied MathematicsUniversity of HeidelbergHeidelbergGermany
  2. 2.Institute of Medical BiometryUniversity of TübingenTübingenGermany

Personalised recommendations