Advertisement

Concentration Sets, Elfving Sets and Norms in Optimum Design

  • Andrej Pázman
Chapter
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 51)

Abstract

The aim of the paper is to compare different notions which have appeared in the development of optimum experimental design (concentration (or confidence) ellipsoid, Elving set, lower bounds for variances) and to show that they are connected via certain norms. This helps in using them for a graphical representation of the properties of experimental designs in linear models, or for comparing possibilities of optimum designs in different models.

Keywords

design of experiments confidence ellipsoid minimal variance visualization of design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dette, H. (1993). Elfving’s theorem for D-optimality. Ann. Statist. 21, 753–776.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Dette, H., Studden, W.J. (1993). Geometry of E-optimality. Ann. Statist. 21, 416–433.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Elfving, G. (1952). Optimum allocation in linear regression theory. Ann. Math. Statist. 23, 255–262.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Fedorov, V.V. (1972) Theory of Optimal Experiments. New York: Academic Press.Google Scholar
  5. Fedorov, V.V. and Hackl, P. (1997). Model Oriented Design of Experiments. Lecture Notes in Statistics No. 125. New York: Springer-Verlag.zbMATHCrossRefGoogle Scholar
  6. Fedorov, V.V. and Pázman, A. (1968). Design of physical experiments. Fortschritte der Physik 16, 325–355.CrossRefGoogle Scholar
  7. Pázman, A. (1974). The ordering of experimental designs (A Hilbert space approach). Kybernetika 10, 373–388.MathSciNetzbMATHGoogle Scholar
  8. Pázman, A. (1978). Hilbert-space methods in experimental design. Kybernetika 14, 73–84.MathSciNetzbMATHGoogle Scholar
  9. Pukelsheim, F. (1981). On c-optimal design measures. Mathem. Operationsforschung und Statistik ser. Statistics 12, 13–20.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Pukelsheim, F. and Studden, W.J. (1993). E-optimal designs for polynomial regression. Ann. Statist. 21, 402–415.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Rao, C.R. (1973). Linear Statistical Inference and Its Applications (2nd edition). New York: Wiley.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Andrej Pázman
    • 1
  1. 1.Faculty of Mathematics and PhysicsComenius UniversityBratislavaSlovak Republic

Personalised recommendations