Advertisement

Version One: Linear Equality Constraints

  • Stefan M. Stefanov
Part of the Applied Optimization book series (APOP, volume 53)

Abstract

Denote by (C =) a version of problem (C) where instead of (5.2) we have a linear equality constraint: (C =)
$$\min \left\{ {c(x) = \sum\limits_{j \in J} {{c_j}({x_j})} } \right\}$$
(6.1)
subject to
$$\sum\limits_{j \in J} {{d_j}{x_j} = \alpha }$$
(6.2)
$${a_j} \le {x_j} \le {b_j},\;j \in J$$
(6.3)
where c j (x j ) are twice differentiate convex functions of the same form, defined on the open convex sets X j in R, jJ, respectively, d j > 0, jJ ≝ {1,..., n}

Keywords

Lagrange Multiplier Equality Constraint Nondecreasing Function Linear Time Algorithm Hyperplane Arrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Stefan M. Stefanov
    • 1
  1. 1.Department of MathematicsSouth West UniversityBlagoevgradBulgaria

Personalised recommendations