Skip to main content

Simulation of Digital Camera Images from Hyperspectral Input

  • Chapter
Vision Models and Applications to Image and Video Processing

Abstract

An important goal for digital color cameras is to record enough information about a scene so that it can be reproduced accurately for a human observer. By accurately, we mean so that the human observer will perceive the reproduction as looking like the original.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Barnard: Pratical Color Constancy. Ph.D. thesis, Simon Fraser University, 1999.

    Google Scholar 

  2. B. Bayer: “Color imaging array.” U.S. Patent # 3,971, 065, 1976.

    Google Scholar 

  3. J. Bergen et al.: “Hierarchical model-based motion estimation.” in Proc. of the Second European Conference on Computer Vision, pp. 237–252, 1992.

    Google Scholar 

  4. D. Brainard: “Calibration of a computer controlled color monitor.” Color Research and Application 14: 23–34, 1989.

    Article  Google Scholar 

  5. D. Brainard: “Bayesian method for reconstructing color images from trichromatic samples.” in Proc. of ISandT 47th Annual Meeting, pp. 375380, 1994.

    Google Scholar 

  6. D. Brainard: “Colorimetry.” 1995.

    Google Scholar 

  7. D. Brainard: “Color specification” 2000.

    Google Scholar 

  8. D. Brainard, W. Freeman: `Bayesian color constancy.“ J. of the Optical Society of America A 14: 1393–1411, 1997.

    Google Scholar 

  9. D. Brainard, D. Sherman: “Reconstructing image from trichromatic samples: from basic research to practical applications.” in Proc. of ISandT/SID Color Imaging Conference, pp. 4–10, 1995.

    Google Scholar 

  10. G. Brelstaff et al.: “Hyper-spectral camera system: acquisition and analysis.” in Proc. of SPIE Conference on Geographic Information Systems, Photogrammetry, and Geological/Geophysical Remote Sensing, pp. 150159, 1995.

    Google Scholar 

  11. G. Buchsbaum: “A spatial processor model for object colour perception.” J. Franklin Inst. 310: 1–26, 1980.

    Article  Google Scholar 

  12. P. Catrysse, B. Wandell, A. E. Gamal: “Comparative analysis of color architectures for image sensors.” in SPIE Proc.; Sensors, cameras, and applications for digital photography, vol. 3650–04, pp. 26–35, 1999.

    Google Scholar 

  13. CIE: Recommendations on uniform color spaces, color difference equations, and psychometric terms. Tech. Rep. Supplement No.2 to CIE publication No.15, Bureau Central de la CIE, 1978.

    Google Scholar 

  14. CIE: Colorimetry. Tech. rep., Bureau Central de la CIE, 1986.

    Google Scholar 

  15. J. Cohen: “Dependency of the spectral curves of the Munsell color chips.” Psychonomic Science 1: 369–370, 1964.

    Google Scholar 

  16. D. Cok: “Reconstruction of ccd images using template matching.” in Proc. of ISandT 47th Annual Meeting, pp. 380–385, 1994.

    Google Scholar 

  17. M. Fairchild: Color Appearance Models. Addison-Wesley, 1997.

    Google Scholar 

  18. G. Finlayson, P. Hubel, S. Hordley: “Colour by correlation” in Proc. of ISandT/SID Color Imaging Conference, pp. 6–11, 1997.

    Google Scholar 

  19. W. Freeman: “Method and apparatus for reconstructing missing color samples.” U.S. Patent # 4,663,655; Polaroid Corporation, 1987.

    Google Scholar 

  20. G. Healey, R. Kondepudy: “Radiometric CCD camera calibration and noise estimation.” IEEE Transactions on Pattern Analysis and Machine Intelligence 16 (3): 267–276, 1994.

    Article  Google Scholar 

  21. E. Hecht: Optics. Addison-Wesley, 1997.

    Google Scholar 

  22. D. Heeger: Notes on Motion Estimation. Stanford University, 1996, http://white.stanford.edu:80/-heeger/registration.html.

    Google Scholar 

  23. G. Holst: Sampling, Aliasing, and Data Fidelity for Electronic Imaging Systems, Communications, and Data Acquisition. SPIE, 1998.

    Google Scholar 

  24. B. Horn: “Exact reproduction of colored images.” Computer Vision Graphics and Image Processing 26: 135–167, 1984.

    Article  MathSciNet  Google Scholar 

  25. A. Hurlbert: “Computational models of color constancy” 1998.

    Google Scholar 

  26. D. Judd, D. MacAdam, G. Wyszecki: “Spectral distribution of typical daylight as a function of correlated color temperature.” J. of the Optical Society of America 54: 1031–1040, 1964.

    Article  Google Scholar 

  27. K. Kelly, K. Gibson, D. Nickerson: “Tristimulus specification of the munsell book of color from spectrophotometric measurements.” J. of the Optical Society of America 33: 355–376, 1943.

    Article  Google Scholar 

  28. R. Kingslake: Lens Design Fundamentals. Academic Press, 1978.

    Google Scholar 

  29. E. Krinov: “Spectral reflectance properties of natural formations.” in Technical Translation: TT-439, National Research Council of Canada, 1947.

    Google Scholar 

  30. L. Maloney: “Evaluation of linear models of surface spectral reflectance with small number of parameters.” J. of the Optical Society of America A 3: 1673–1683, 1986.

    Article  Google Scholar 

  31. L. Maloney: “Color constancy and color perception: The linear models framework.” 1992.

    Google Scholar 

  32. L. Maloney: “Physics-based approaches to modeling surface color perception.” 2000.

    Google Scholar 

  33. L. Maloney, B. Wandell: “Color constancy: a method for recovering surface spectral reflectance.” J. of the Optical Society of America A 3: 29–33, 1986.

    Article  Google Scholar 

  34. D. Nickerson: Spectrophotometric data for a collection of Munsell sample. Tech. rep., U.S. Department of Agriculture, 1957.

    Google Scholar 

  35. J. Parkkinen, J. Hallikainen, T. Jaaskelainen: “Characteristics spectra of munsell chips.” J. of the Optical Society of America A 6: 318–322, 1989.

    Article  Google Scholar 

  36. C. Parraga et al.: “Color and luminance information in natural scenes.” J. of the Optical Society of America A 15: 563–569, 1998.

    Article  Google Scholar 

  37. D. Ruderman, T. Cronin, C. Chiao: “Statistics of cone responses to natural images: implications for visual coding.” J. of the Optical Society of America A 15: 2036–2045, 1998.

    Google Scholar 

  38. G. Sharma, H. Trussel: “Characterization of scanner sensitivity.” in Proc. of ISandT/SID Color Imaging Conference, pp. 103–107, 1993.

    Google Scholar 

  39. R. Short, D. Williams, A. Jones: “Image capture simulation using an accurate and realistic lens model.” in SPIE Proc.: Sensors, cameras, and applications for digital photography, vol. 3650–20, pp. 138–148, 1999.

    Google Scholar 

  40. E. Simoncelli: “Bayesian denoising of visual images in the wavelet domain.” 1999.

    Google Scholar 

  41. P. Vora et al.: Digital color cameras - 1 - Response models. Tech. Rep. HPL-97–53/54, Hewlett Packard, 1997, http://www.hpl.hp.com/techreports/97/HPL-97-53.ps.

    Google Scholar 

  42. P. Vora et al.: Digital color cameras - 2 - Spectral response. Tech. Rep. HPL-97–54, Hewlett Packard, 1997.

    Google Scholar 

  43. B. Wandell: “Color rendering of camera data.” Color Research and Application Sup. 11: S30 — S33, 1986.

    Google Scholar 

  44. B. Wandell: Foundations of Vision. Sinauer Associates, 1995.

    Google Scholar 

  45. B. Wandell, L. Silverstein: “Color technology and color reproduction.” 2000.

    Google Scholar 

  46. M. Webster, J. Mollon: “Adaptation and the color statistics of natural images.” Vision Research 37: 3283–3298, 1997.

    Article  Google Scholar 

  47. M. Wober, R. Soini: “Method and apparatus for recovering image data through the use of a color test pattern.” U.S. Patent #5,475,769; Polaroid Corporation, 1995.

    Google Scholar 

  48. X. Zhang: Spatial color fidelity metric S-CIELAB. Ph.D. thesis, Stanford University, 1997.

    Google Scholar 

  49. X. Zhang, B. Wandell: “A spatial extension of CIELAB for digital color image reproduction.” Society for Information Display Journal 5: 61–64, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Longère, P., Brainard, D.H. (2001). Simulation of Digital Camera Images from Hyperspectral Input. In: van den Branden Lambrecht, C.J. (eds) Vision Models and Applications to Image and Video Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3411-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3411-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4905-9

  • Online ISBN: 978-1-4757-3411-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics