Modeling Contrast Thresholds

  • Amnon Silverstein
  • Thom Carney
  • Stanley A. Klein


The application of the linear systems approach to the analysis of human spatial vision [1] began in earnest in the 1960’s, with estimates of the human contrast sensitivity function (CSF)[2]. Human visual system (HVS) models fall into two broad categories: single resolution and multi-resolution. Single resolution models typically use a low-pass (or a band-pass) filter as the first stage. These models have the advantage of computational simplicity but ignore much of what we have learned from neurophysiological and psychophysical studies. The CSF is also often used to scale mechanism sensitivity in standard multi-resolution HVS models [3].


Spatial Frequency Discrete Cosine Transformation Human Visual System Human Vision Contrast Sensitivity Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. W. Campbell and J. G. Robson (1968) “Applications of Fourier analysis to the visibility of gratings,” J. Physio.181: 551–556Google Scholar
  2. [2]
    Campbell, F.W. & Green, D.G. (1965) “Optical quality of the human eye,” J. Physiol.181, 576–593Google Scholar
  3. [3]
    Watson, A.B. & Solomon, J. (1997) “A model of visual contrast gain control and pattern masking,” J. Opt Soc Am. A,14: 2379–2391.CrossRefGoogle Scholar
  4. [4]
    Landy, M.S., Manovich, L.Z. and Stetten, G.D. (1989) “All about EVE: The early vision emulation software,” Beh. Methods. Inst. & Comp.21: 491–501.CrossRefGoogle Scholar
  5. [5]
    Carney, T. (1998) “Mindseye: a visual programming and modeling envirionment for imaging science,” Proc. SPIE: Human Vision and Electronic Imaging III (ed. Rogowitz, B.E. & Pappas, T.N.)3299: 4858.Google Scholar
  6. [6]
    Wilson, H. R. & Bergen, J.R. (1979) “A four mechanism model for threshold spatial vision,” Vision Research,19: 19–32.CrossRefGoogle Scholar
  7. [7]
    S.A. Klein and D. M. Levi (1985) “Hyperacuity thresholds of 1 second: Theoretical predictions and empirical validation,” Journal of the optical society of America A2: 1170–1190CrossRefGoogle Scholar
  8. [8]
    A. B. Watson (1987) “Efficiency of a model human image code,” J. Opt. Soc. Am. A4: 2401–2417CrossRefGoogle Scholar
  9. [9]
    S. Daly (1993) “The visible differences predictor: An algorithm for the assessment of image fidelity,” In:Digital Images an Human Vision, A. B. Watson, editor, MIT Press, Cambridge, MassachusettsGoogle Scholar
  10. [10]
    D. Gabor (1946) “Theory of communication,” J. Inst. Electr. Eng.24: 891–910Google Scholar
  11. [11]
    S. A. Klein and B. Beutter (1992) “Minimizing and maximizing the joint space-spatial freqency uncertainty of Gabor-like functions”, J. Opt. Soc. Am.19 337–340CrossRefGoogle Scholar
  12. [12]
    A. B. Watson and A. J. Ahumada (1987) “An orthogonal oriented quadrature hexagonal image pyramid,” NASA Technical Memorandum 100054Google Scholar
  13. [13]
    A. B. Watson (1993) “DCT quantized matrices visually optimized for individual images,” SPIE1913: 202–216CrossRefGoogle Scholar
  14. [14]
    A. B. Watson (1987) “Efficiency of a model human image code,” J. Opt. Soc. Am. A4: 2401–2417CrossRefGoogle Scholar
  15. [15]
    M. M. Taylor (1963) “Visual discrimination and orientation,” J. Opt. Soc. Am.53: 763–765CrossRefGoogle Scholar
  16. [16]
    G. K. Wallace (1990) “Overview of the JPEG (ISO/CCIT) still image compression standard,” SPIE proceedings on Image Processing Algorithms and Techniques, Vol. 1244, San JoseGoogle Scholar
  17. [17]
    J. Rovamo, O. Luntinen, R. Nasanen (1993) “Modeling the dependence of contrast sensitivity on grating area and spatial frequency,” Vision Research33: 2773–2787CrossRefGoogle Scholar
  18. [18]
    J. G. Robson and N. Graham (1979) “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Research21: 409–418CrossRefGoogle Scholar
  19. [19]
    R. F. Quick (1974) “A vector-magnitude model of contrast detection,” Kybernetik16: 65–67CrossRefGoogle Scholar
  20. [20] C. Blakemore, F. W. Campbell(1969)
    “On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images”, J. Physiol.203: 237–260Google Scholar
  21. [21]
    J. O. Limb (1979) “Distortion criteria of the human viewer”, IEEE Transactions on systems, Man, and Cybernetics12: 778–792CrossRefGoogle Scholar
  22. [22]
    S. A. Klein (1989) “Visual multipoles and the assessment of visual sensitivity to displayed images,” SPIE Human Vision, Visual Processing, and Digital Display,1077: 83–92Google Scholar
  23. [23]
    R. Ulichney, (1987) Digital Halftoning The MIT Press, Cambridge MassachusettsGoogle Scholar
  24. [24]
    R. Ulichney, (1992) “The void-and-cluster method for dither array generation.” IS T/SPIE 1993 International Symposium on Electronic Imaging36 (3): 211–219Google Scholar
  25. [25]
    M. B. Sachs, J. Nachmias and J. G. Robson (1971) “Spatial frequency channel in human vision,” J. Opt. Soc. Am.61: 1176–1186CrossRefGoogle Scholar
  26. [26]
    A. Silverstein (1999) “A Model of Human Vision,” Ph.D. Thesis, University of California at BerkeleyGoogle Scholar
  27. [27]
    A. Silverstein, S. A. Klein (1998) “A Regression-Tuned Multi-Resolution Model of Visual Detection” The optical society of America, Baltimore MDGoogle Scholar
  28. [28]
    Carney, T., Klein, S.A., Tyler, C.W., Silverstein, A.D., Beuter, B., Levi, D., Watson, A.B., Reeves, A.J., Norcia, AM., Chen, C., Makous, W. & Eckstein, M.P. (1999) “The development of an image/threshold database for designing and testing human vision models,” Proc. SPIE: Human Vision and Electronic Imaging IV (ed. Rogowitz, B.E. & Pappas, T.N.)3644: 542–551Google Scholar
  29. [29]
    Carney, T., Tyler, C. W., Watson, A. B., Makous, W., Beutter, B., Chen, C., Norcia, A. M. and Klein, S. A. (2000) “Modelfest: year one results and plans for future years” Proc. SPIE: Human Vision and Electronic Imaging V. (ed. Rogowitz, B. E. and Pappas, T.)3959: 140–151.Google Scholar
  30. [30]
    Watson, A. B. (2000). Visual detection of spatial contrast patterns: Evaluation of five simple models. Optics Express6 (1): 12–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Amnon Silverstein
    • 1
  • Thom Carney
    • 2
  • Stanley A. Klein
    • 3
  1. 1.Imaging Technology DepartmentHewlett Packard LaboratoriesPalo AltoUSA
  2. 2.Neurometrics InstituteBerkeleyUSA
  3. 3.School of OptometryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations