Pattern Masking

  • Geoffrey M. Boynton


Pattern masking is psychophysical paradigm used to study the spatiotemporal properties of the human visual system. In a typical experiment, a target stimulus is detected in the presence of a masker stimulus. The presence of the masker usually reduces the visibility of the target so that the target requires a higher contrast for detection.


Stimulus Onset Asynchrony Receptive Field Temporal Frequency Impulse Response Function Pattern Masking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bonds, A. B. (1989). “Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex.” Vis Neurosci 2 (1): 41–55.CrossRefGoogle Scholar
  2. [2]
    Boynton, G. M. and J. M. Foley (1999). “Temporal sensitivity of human luminance pattern mechanisms determined by masking with temporally modulated stimuli.” Vision Res 39 (9): 1641–56.CrossRefGoogle Scholar
  3. [3]
    Burbeck, C. A. and D. H. Kelly (1981). “Contrast gain measurements and the transient/sustained.” J Opt Soc Am 71 (11): 1335–42.Google Scholar
  4. [4]
    Carandini, M., D. J. Heeger, et al. (1997). “Linearity and normalization in simple cells of the macaque primary visual cortex.” J Neurosci 17 (21): 8621–44.Google Scholar
  5. [5]
    Chen, C., J. M. Foley, et al. (2000). “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements.” Vision Res 40 (7): 773–788.CrossRefGoogle Scholar
  6. [6]
    Foley, J. M. (1994). “Human luminance pattern-vision mechanisms: masking experiments require a new model.” J Opt Soc Am A 11 (6): 1710–9.CrossRefGoogle Scholar
  7. [7]
    Foley, J. M. and C. C. Chen (1997). “Analysis of the effect of pattern adaptation on pattern pedestal effects: a two-process model.” Vision Res 37 (19): 2779–88.CrossRefGoogle Scholar
  8. [8]
    Foley, J. M. and C. C. Chen (1999). “Pattern detection in the presence of maskers that differ in spatial phase and temporal offset: threshold measurements and a model [In Process Citation].” Vision Res 39 (23): 3855–72.CrossRefGoogle Scholar
  9. [9]
    Heeger, D. J. (1993). “Modeling simple-cell direction selectivity with normalized, half-squared, linear operators.” J Neurophysiol 70 (5): 1885–98.Google Scholar
  10. [10]
    Legge, G. E. and J. M. Foley (1980). “Contrast masking in human vision.” J Opt Soc Am 70 (12): 1458–71.CrossRefGoogle Scholar
  11. [11]
    Lehky, S. R. (1985). “Temporal properties of visual channels measured by masking.” J Opt Soc Am [A] 2 (8): 1260–72.CrossRefGoogle Scholar
  12. [12]
    Movshon, J. A., I. D. Thompson, et al. (1978). “Spatial summation in the receptive fields of simple cells in the cat’s striate cortex.” J Physiol (Lond) 283: 53–77.Google Scholar
  13. [13]
    Nachmias, J. and R. V. Sansbury (1974). “Letter: Grating contrast: discrimination may be better than detection.” Vision Res 14 (10): 1039–42CrossRefGoogle Scholar
  14. [14]
    Sillito, A. M., K. L. Grieve, et al. (1995). “Visual cortical mechanisms detecting focal orientation discontinuities.” Nature 378 (6556): 492–6.CrossRefGoogle Scholar
  15. [15]
    Simoncelli, E. P. and D. J. Heeger (1998). “A model of neuronal responses in visual area MT.” Vision Res 38 (5): 743–61.CrossRefGoogle Scholar
  16. [16]
    Stromeyer, C. F. d. and S. Klein (1974). “Spatial frequency channels in human vision as asymmetric (edge) mechanisms.” Vision Res 14 (12): 1409–20.CrossRefGoogle Scholar
  17. [17]
    Wilson, H. R. and J. R. Bergen (1979). “A four mechanism model for threshold spatial vision.” Vision Res 19 (1): 19–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Geoffrey M. Boynton
    • 1
  1. 1.The Salk Institute for Biological StudiesLa JollaUSA

Personalised recommendations