Advertisement

Analytic Center Based Cutting Plane Method for Linear Semi-Infinite Programming

  • Soon-Yi Wu
  • Shu-Cherng Fang
  • Chih-Jen Lin
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 57)

Abstract

In this paper, an analytic center based cutting plane method is proposed for solving linear semi-infinite programming problems. It is shown that a near optimal solution can be obtained by generating a polynomial number of cuts.

Keywords

Plane Method Analytic Center Polynomial Number Unique Optimal Solution Convex Feasibility Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. J. Anderson and P. Nash. Linear Programming in Infinite-Dimensional Spaces, Wiley, 1987.MATHGoogle Scholar
  2. [2]
    S. C. Fang and S. Y. Wu. An inexact approach to solving linear semi-infinite programming problems, Optimization, 28:291–299, 1994.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    K. Glashoff and S. A. Gustafson. Linear Optimization and Approximation, Springer-Verlag, 1982.Google Scholar
  4. [4]
    M. A. Goberna and M. A. López. Linear Semmi-Infinite Optimization, Wiley, 1998.Google Scholar
  5. [5]
    J. L. Goffin, Z. Q. Luo, and Y. Ye. On the complexity of a column generation algorithm for convex or quasiconvex feasibility problems. In W. W. Hager et al., editors, Large Scale Optimnization, pages 182–191, Kluwer, 1994.CrossRefGoogle Scholar
  6. [6]
    J. L. Goffin, Z. Luo and Y. Ye. Complexity analysis of an interior-point cutting plane method for convex feasibility problem, SIAM Journal on Optimization, 6:638–652, 1996.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    S. A. Gustafson and K. O. Kortanek. Numerical treatment of a class of semi-infinite programming problems. Naval Research Logistics Quarterly, 20:477–504, 1973.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    S. A. Gustafson and K. O. Kortanek. Computation of optimal experimental designs for air quality surveillance. In Jansen, P. J. et al., editors, Quantitative Modelle für Ökonomnisch-Okologische Analysen, pages 43–60, Verlag Anton Hain, Meisenheim, Germany, 1976.Google Scholar
  9. [9]
    R. Hettich and K. Kortanek. Semi-infinite programming: theory, method and applications, SIAM Review, 35:380–429, 1993.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    H. C. Lai and S. Y. Wu. On linear semi-infinite programming problems: an algorithm, Numnerical Functional Analysis and Optimization, 13:287–304, 1992.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    C. J. Lin, S. C. Fang, and S. Y. Wu. An unconstrained convex programming approach for solving linear semi-infinite programming problems, SIAM Journal on Optimization, 8:443–456, 1998.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    K. Roleff. A stable multiple exchange algorithm for linear SIP. In Hettich, R., editor, Semni-Infinite Programnmning: Proceedings of a Workshop, Volume 15 of Lecture Notes in Control and Information Sciences, pages 83–96, Springer-Verlag, 1979.CrossRefGoogle Scholar
  13. [13]
    S. Y. Wu, S. C. Fang, and C. J. Lin. Relaxed cutting plane method for solving linear semi-infinite programming problems, Journal of Optimnization Theory and Applications, 99:759–779, 1998.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Soon-Yi Wu
    • 1
  • Shu-Cherng Fang
    • 2
  • Chih-Jen Lin
    • 3
  1. 1.Institute of Applied MathematicsNational Cheng-Kung UniversityTainan 700Taiwan, R.O. C.
  2. 2.Operations Research and Industrial EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Computer Science and Information EngineeringNational Taiwan UniversityTaipeiTaiwan, R.O.C.

Personalised recommendations