Hypoxia pp 293-304 | Cite as

Proton-gated cation channels — neuronal acid sensors in the central and peripheral nervous system

  • Rainer Waldmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 502)


Metabolic hyperactivity or limited oxygen supply can cause a decrease of tissue pH. Severe tissue acidosis that accompanies ischemia and most forms of inflammation is painful and sensory neurons respond to acidic tissue pH with increased firing. H+-gated cation channels in sensory nerve endings are thought to be responsible for the activation of nociceptive afferents by acid. The members of one family of recently identified H+-gated cation channels (ASICs, Acid Sensing Ion Channels) are candidates for the acid sensor in sensory nerve endings. Certain ASIC subunits are also or exclusively expressed in neurons of the central nervous system (CNS) where the role of those cation channels is as for yet unknown. Neuronal activity is accompanied by pH fluctuations and the widespread expression of ASIC channels throughout the CNS suggests that activation of those ion channels by local acidic transients might play a role in neurotransmission or neuromodulation.

Key words

ASIC channels nociception sensory neurons neurotransmission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akaike N and Ueno S. Proton induced current in neuronal cells. Prog. Neurobiol 43: 73–83, 1994.PubMedCrossRefGoogle Scholar
  2. 2.
    Akopian AN, Chen CC, Ding Y, Cesare P and Wood JN. A new member of the acid-sensing ion channel family. Neuroreport 11: 2217–2222, 2000.PubMedCrossRefGoogle Scholar
  3. 3.
    Babinski K, Le KT and Seguela P. Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J Neurochem 72: 51–57., 1999.PubMedCrossRefGoogle Scholar
  4. 4.
    Belmonte C, Gallar J, Pozo MA and Rebollo I. Excitation by irritant chemical substances of sensory afferent units in the cat’s cornea. J Physiol 437: 709–725., 1991.PubMedGoogle Scholar
  5. 5.
    Benson CJ, Eckert SP and McCleskey EW. Acid-evoked currents in cardiac sensory neurons: A possible mediator of myocardial ischemic sensation. Circ Res 84: 921–928., 1999.PubMedCrossRefGoogle Scholar
  6. 6.
    Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI and Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306–313., 2000.PubMedCrossRefGoogle Scholar
  7. 7.
    Champigny G, Voilley N, Waldmann R and Lazdunski M. Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1. J Biol Chem 273: 15418–15422, 1998.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen CC, England S, Akopian AN and Wood JN. A sensory neuron-specific, protongated ion channel. Proc Natl Acad Sci U S A 95: 10240–10245., 1998.PubMedCrossRefGoogle Scholar
  9. 9.
    Chesler M. The regulation and modulation of pH in the nervous system. Prog Neurobiol 34:401–427, 1990.PubMedCrossRefGoogle Scholar
  10. 10.
    Christoph RA, Buchanan L, Begalla K and Schwartz S. Pain reduction in local anesthetic administration through pH buffering. Ann Emerg Med 17: 117–120., 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A and Sheardown SA. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405: 183–187., 2000.PubMedCrossRefGoogle Scholar
  12. 12.
    de Weille JR, Bassilana F, Lazdunski M and Waldmann R. Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. FEBS Lett 433: 257–260, 1998.PubMedCrossRefGoogle Scholar
  13. 13.
    Escoubas P, De Weille JR, Lecoq A, Diochot S, Waldmann R, Champigny G, Moinier D, Menez A and Lazdunski M. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J Biol Chem 275: 25116–25121, 2000.PubMedCrossRefGoogle Scholar
  14. 14.
    Garcia-Anoveros J, Derfler B, Neville-Golden J, Hyman BT and Corey DP. BNaCl and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci USA 94: 1459–1464., 1997.PubMedCrossRefGoogle Scholar
  15. 15.
    Helmlinger G, Yuan F, Dellian M and Jain RK. Interstitial pH and p02 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nature Med 3: 177–182, 1997.PubMedCrossRefGoogle Scholar
  16. 16.
    Huang M and Chalfie M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367: 467–470, 1994.PubMedCrossRefGoogle Scholar
  17. 17.
    Kress M and Zeilhofer HU. Capsaicin, protons and heat: new excitement about nociceptors. Trends Pharmacol Sci 20: 112–118., 1999.PubMedCrossRefGoogle Scholar
  18. 18.
    Lingueglia E, de Weille JR, Bassilana F, Heurteaux C, Sakai H, Waldmann R and Lazdunski M. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 272: 29778–29783, 1997.PubMedCrossRefGoogle Scholar
  19. 19.
    Lingueglia E, de Weille JR, Bassilana F, Heurteaux C, Sakai H, Waldmann R and Lazdunski M. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells [In Process Citation]. J Biol Chem 272: 29778–29783, 1997.PubMedCrossRefGoogle Scholar
  20. 20.
    Miesenbock G, De Angelis DA and Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394: 192–195., 1998.PubMedCrossRefGoogle Scholar
  21. 21.
    Nedergaard M, Kraig RP, Tanabe J and Pulsinelli WA. Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol 260: R581–588., 1991.PubMedGoogle Scholar
  22. 22.
    Neher E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20: 389–399., 1998.PubMedCrossRefGoogle Scholar
  23. 23.
    Pan HL, Longhurst JC, Eisenach JC and Chen SR. Role of protons in activation of cardiac sympathetic C-fibre afferents during ischaemia in cats. J Physiol 518: 857–866., 1999.PubMedCrossRefGoogle Scholar
  24. 24.
    Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA and Welsh MJ. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407: 1007–1011., 2000.PubMedCrossRefGoogle Scholar
  25. 25.
    Price MP, Snyder PM and Welsh MJ. Cloning and expression of a novel human brain Na+ channel. J Biol Chem 271: 7879–7882, 1996.PubMedCrossRefGoogle Scholar
  26. 26.
    Reeh PW and Steen KH. Tissue acidosis in nociception and pain. Prog Brain Res 113: 143–151, 1996.PubMedCrossRefGoogle Scholar
  27. 27.
    Rossier BC, Canessa CM, Schild L and Horisberger JD. Epithelial sodium channels. Curr Opin Nephrol Hypertens 3: 487–496, 1994.PubMedCrossRefGoogle Scholar
  28. 28.
    Steen KH, Issberner U and Reeh PW. Pain due to experimental acidosis in human skin: evidence for non- adapting nociceptor excitation. Neurosci Lett 199: 29–32., 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Steen KH, Reeh PW, Anton F and Handwerker HO. Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J Neurosci 12: 86–95., 1992.PubMedGoogle Scholar
  30. 30.
    Sutherland SP, Benson CJ, Adelman JP and McCleskey EW. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA 98: 711–716., 2001.PubMedCrossRefGoogle Scholar
  31. 31.
    Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI and Julius D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21: 531–543., 1998.PubMedCrossRefGoogle Scholar
  32. 32.
    Vanning T. Proton-gated ion channels in cultured mouse cortical neurons. Neuropharmacology 38: 1875–1881, 1999.CrossRefGoogle Scholar
  33. 33.
    Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C and Lazdunski M. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem 272: 20975–20978, 1997.PubMedCrossRefGoogle Scholar
  34. 34.
    Waldmann R, Champigny G, Bassilana F, Heurteaux C and Lazdunski M. A proton gated cation channel involved in acid sensing. Nature 386: 173–177, 1997.PubMedCrossRefGoogle Scholar
  35. 35.
    Waldmann R, Champigny G, Bassilana F, Heurteaux C and Lazdunski M. A protongated cation channel involved in acid-sensing. Nature 386: 173–177, 1997.PubMedCrossRefGoogle Scholar
  36. 36.
    Waldmann R and Lazdunski M. H (+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8: 418–424, 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Rainer Waldmann
    • 1
  1. 1.Institut de Pharmacologie Moléculaire et Cellulaire - CNRSSophia-AntipolisValbonneFrance

Personalised recommendations