Hypoxia pp 237-247 | Cite as

Weight loss at high altitude

  • Matthias Tschöp
  • Katherine M. Morrison
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 502)


Loss of appetite and weight are frequently observed at altitudes above 5000m. However, the pathophysiology behind changes in body composition at extreme altitude is still not fully understood. Proper acclimatization to altitude and high caloric intake minimizes, but can not completely prevent significant weight loss under the influence of hypobaric hypoxia. The discovery of leptin in 1994 has initiated a new research area investigating molecular networks that connect peripheral organs with the central nervous system to sense and regulate energy intake as well as energy expenditure. Since then, a whole microcosm of new hormones, neurotransmitters and receptors has been discovered and studied with respect to body weight control. Those agents include neuropeptide Y (NPY), agouti-related protein (AGRP), melanocortin receptors (MC-R), cocaine-amphetamine regulated transcript (CART), proopiomelanocortin (POMC), orexin A and B (hypocretins), melanin-concentrating hormone (MCH) and ghrelin (endogenous ligand of the growth hormone secretagogue receptor). This overview will introduce the current concepts of the molecular control of energy homeostasis and attempt to reexamine the effects of altitude on appetite and body composition in light of these concepts. An overview of studies on changes of appetite and body composition at high altitude will be followed by the presentation of recent data on changes of endocrine parameters at hypobaric hypoxia that could be involved in the pathophysiology of weight loss.

Key words

leptin NPY ghrelin cachexia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armellini F, Zamboni M, Robbi R, Todesco T, Bissoli L, Mino A, Angelini G, Micciolo R, and Bosello O. The effects of high altitude trekking on body composition and resting metabolic rate. Horm Metab Res 29: 458–461, 1997.PubMedCrossRefGoogle Scholar
  2. 2.
    Bailey DM, Davies B, Castell LM, Newsholme EA, and Calam J. Physical exercise and normobaric hypoxia: independent modulators of peripheral cholecystokinin metabolism in man. J Appl Physiol 90: 105–113. 2001.PubMedGoogle Scholar
  3. 3.
    Bailey DM, Davies B, Milledge JS, Richards M, Williams SR, Jordinson M, and Calam J. Elevated plasma cholecystokinin at high altitude: metabolic implications for the anorexia of acute mountain sickness. High Alt Med Biol 1: 9–23. 2000.PubMedCrossRefGoogle Scholar
  4. 4.
    Basu M, Pal K, Prasad R, Malhotra AS, Rao KS, and Sawhney RC. Pituitary, gonadal and adrenal hormones after prolonged residence at extreme altitude in man. Int J Androl 20: 153–158. 1997.PubMedCrossRefGoogle Scholar
  5. 5.
    Boyer S J, and Blume FD. Weight loss and changes in body composition at high altitude. J Appl Physiol 57: 1580–1585. 1984.PubMedGoogle Scholar
  6. 6.
    Bradwell AR, Dykes PW, Coote JH, Forster PJ, Milles JJ, Chesner I, and Richardson NV. Effect of acetazolamide on exercise performance and muscle mass at high altitude. Lancet 1: 1001–1005. 1986.PubMedCrossRefGoogle Scholar
  7. 7.
    Butterfield GE. Nutrient requirements at high altitude. Clin Sports Med 18: 607–621. 1999.PubMedCrossRefGoogle Scholar
  8. 8.
    Butterfield GE, Gates J, Fleming S, Brooks GA, Sutton JR, and Reeves JT. Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol 72: 1741–1748. 1992.PubMedGoogle Scholar
  9. 9.
    Chesner IM, Small NA, and Dykes PW. Intestinal absorption at high altitude. Postgrad Med J 63: 173–175. 1987.PubMedCrossRefGoogle Scholar
  10. 10.
    Coleman DL. Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9: 294–8. 1973.PubMedCrossRefGoogle Scholar
  11. 11.
    Cone RD. The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol Metab 10: 211–216. 1999.PubMedCrossRefGoogle Scholar
  12. 12.
    Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive- leptin concentrations in normal-weight and obese humans. N Engl J Med 334: 292–295. 1996.PubMedCrossRefGoogle Scholar
  13. 13.
    Dinmore AJ, Edwards JS, Menzies IS, and Travis SP. Intestinal carbohydrate absorption and permeability at high altitude (5,730 m). J Appl Physiol 76: 1903–1907. 1994.PubMedGoogle Scholar
  14. 14.
    Friedman JM. Obesity in the new millennium. Nature 404: 632–634. 2000.PubMedGoogle Scholar
  15. 15.
    Friedman JM, and Halaas JL. Leptin and the regulation of body weight in mammals. Nature 395: 763–770. 1998.PubMedCrossRefGoogle Scholar
  16. 16.
    Fusch C, Gfrorer W, Koch C, Thomas A, Grunert A, and Moeller H. Water turnover and body composition during long-term exposure to high altitude (4,900–7,600 m). J Appl Physiol 80: 1118–1125. 1996.PubMedGoogle Scholar
  17. 17.
    Giussani DA, Phillips PS, Anstee S, and Barker DJ. Effects of Altitude versus Economic Status on Birth Weight and Body Shape at Birth. Pediatr Res 49: 490–494. 2001.PubMedCrossRefGoogle Scholar
  18. 18.
    Guilland JC, and Klepping J. Nutritional alterations at high altitude in man. Eur J Appl Physiol Occup Physiol 54: 517–523. 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Hackett PH, and Rennie D. The incidence, importance, and prophylaxis of acute mountain sickness. Lancet 2: 1149–1155. 1976.PubMedCrossRefGoogle Scholar
  20. 20.
    Harris NS, Crawford PB, Yangzom Y, Pinzo L, Gyaltsen P, and Hudes M. Nutritional and health status of Tibetan children living at high altitudes. N Engl J Med 344: 341–347. 2001.PubMedCrossRefGoogle Scholar
  21. 21.
    Hartmann G, Tschop M, Fischer R, Bidlingmaier C, Riepl R, Tschop K, Hautmann H, Endres S, and Toepfer M. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine 12: 246–252. 2000.PubMedCrossRefGoogle Scholar
  22. 22.
    Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P and McCamish M. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. Jama 282: 1568–1575. 1999.PubMedCrossRefGoogle Scholar
  23. 23.
    Hug DH, JK Hunter, and DD Dunkerson. Malnutrition, urocanic acid, and sun may interact to suppress immunity in sojourners to high altitude. Aviat Space Environ Med 72: 136–145. 2001.PubMedGoogle Scholar
  24. 24.
    Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, and Kaira PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20: 68–100. 1999.PubMedCrossRefGoogle Scholar
  25. 25.
    Kayser B. Nutrition and energetics of exercise at altitude. Theory and possible practical implications. Sports Med 17: 309–323. 1994.PubMedCrossRefGoogle Scholar
  26. 26.
    Kayser B. Nutrition and high altitude exposure. Int J Sports Med 13: S129-S132. 1992.PubMedCrossRefGoogle Scholar
  27. 27.
    Kayser B, Acheson K, Decombaz J, Fern E, and Cerretelli P. Protein absorption and energy digestibility at high altitude. J Appl Physiol 73: 2425–2431. 1992.PubMedGoogle Scholar
  28. 28.
    Kayser B, Narici M, Milesi S, Grassi B, and Cerretelli P. Body composition and maximum alactic anaerobic performance during a one month stay at high altitude. Int J Sports Med 14: 244–247. 1993.PubMedCrossRefGoogle Scholar
  29. 29.
    Khalid ME, The association between strenuous physical activity and obesity in a high and low altitude populations in southern Saudi Arabia. Int J Obes Relat Metab Disord 19: 776–780. 1995.PubMedGoogle Scholar
  30. 30.
    Mantzoros CS, and Flier JS. Leptin as a therapeutic agent--trials and tribulations. J Clin Endocrinol Metab 85: 4000–4002. 2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin de Miranda I, Macome JC, Costa LE, and Taquini AC. Adaptation to chronic hypobaric hypoxia and sexual hormones. Acta Physiol Lat Am 27: 65–71. 1977.PubMedGoogle Scholar
  32. 32.
    Mise H, Sagawa N, Matsumoto T, Yura S, Nanno H, Itoh H, Mori T, Masuzaki H, Hosoda K, Ogawa Y, and Nakao K. Augmented placental production of leptin in preeclampsia: possible involvement of placental hypoxia. J Clin Endocrinol Metab 83: 3225–3229. 1998.PubMedCrossRefGoogle Scholar
  33. 33.
    Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, and O’Rahilly S. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387: 903–908. 1997.PubMedCrossRefGoogle Scholar
  34. 34.
    Mordes JP, Blume FD, Boyer S, Zheng MR, and Braverman LE. High-altitude pituitary-thyroid dysfunction on Mount Everest. N Engl J Med 308: 1135–1138. 1983.PubMedCrossRefGoogle Scholar
  35. 35.
    Plata-Salaman CR. Cytokine-induced anorexia. Behavioral, cellular, and molecular mechanisms.Ann N Y Acad Sci 856: 160–170. 1998.PubMedCrossRefGoogle Scholar
  36. 36.
    Plata-Salaman CR. Leptin, anorexia nervosa, and anorexia of acute and chronic disease. Nutrition 15: 943–945. 1999.PubMedCrossRefGoogle Scholar
  37. 37.
    Raff H, Tzankoff SP, and Fitzgerald RS. ACTH and Cortisol responses to hypoxia in dogs.J Appl Physiol 51: 1257–1260. 1981.PubMedGoogle Scholar
  38. 38.
    Ramirez G, Bittle PA, Rosen R, Rabb H, and Pineda D. High altitude living: genetic and environmental adaptation. Aviat Space Environ Med 70: 73–81. 1999.PubMedGoogle Scholar
  39. 39.
    Ramirez G, Herrera R, Pineda D, Bittle PA, Rabb HA, and Bereu BB. The effects of high altitude on hypothalamic-pituitary secretory dynamics in men. Clin Endocrinol (Oxf) 43: 11–18. 1995.CrossRefGoogle Scholar
  40. 40.
    Reynolds RD, Lickteig JA, Deuster PA, Howard MP, Conway JM, Pietersma A, deStoppelaar J, and Deurenberg P. Energy metabolism increases and regional body fat decreases while regional muscle mass is spared in humans climbing Mt. Everest. J Nutr 129: 1307–1314. 1999.PubMedGoogle Scholar
  41. 41.
    Reynolds RD, Lickteig JA, Howard MP, and Deuster PA. Intakes of high fat and high carbohydrate foods by humans increased with exposure to increasing altitude during an expedition to Mt. Everest. J Nutr 128: 50–55. 1998.PubMedGoogle Scholar
  42. 42.
    Robinson SW, Dinulescu DM, and Cone RD. Genetic models of obesity and energy balance in the mouse. Annu Rev Genet 34: 687–745. 2000.PubMedCrossRefGoogle Scholar
  43. 43.
    Rose MS, Houston CS, Fulco CS, Coates G, Sutton JR, and Cymerman A. Operation Everest. II: Nutrition and body composition. J Appl Physiol 65: 2545–2551. 1988.PubMedGoogle Scholar
  44. 44.
    Schwartz MW, Woods SC, Porte D, Seeley RJ, and Baskin DG. Central nervous system control of food intake. Nature 404: 661–671. 2000.PubMedGoogle Scholar
  45. 45.
    Sinha MK, and Caro JF. Clinical aspects of leptin. Vitam Horm 54: 1–30. 1998.PubMedCrossRefGoogle Scholar
  46. 46.
    Spiegelman BM, and Flier JS. Obesity and the regulation of energy balance. Cell 104: 531–543.2001.PubMedCrossRefGoogle Scholar
  47. 47.
    Stephens TW, and Caro JF. To be lean or not to be lean. Is leptin the answer? Exp Clin Endocrinol Diabetes 106: 1–15. 1998.PubMedCrossRefGoogle Scholar
  48. 48.
    Sutton JR, Viol GW, Gray GW, McFadden M, and Keane PM. Renin, aldosterone, electrolyte, and Cortisol responses to hypoxic decompression. J Appl Physiol 43: 421–424. 1977.PubMedGoogle Scholar
  49. 49.
    Tapanainen PJ, Bang P, Muller HL, Wilson K, and Rosenfeld RG. Hypoxia-induced changes in insulin-like growth factors and their binding proteins in pregnant rats. Horm Res 48: 227–234. 1997.PubMedCrossRefGoogle Scholar
  50. 50.
    Tschop M, Smiley DL, and Heiman ML. Ghrelin induces adiposity in rodents. Nature 407:908–913.2000.PubMedCrossRefGoogle Scholar
  51. 51.
    Tschop M, Strasburger CJ, Hartmann G, Biollaz J, and Bartsch P. Raised leptin concentrations at high altitude associated with loss of appetite. Lancet 352: 1119–1120. 1998.PubMedCrossRefGoogle Scholar
  52. 52.
    Westerterp KR, Kayser B, Brouns F, Herry JP, and Saris WH. Energy expenditure climbing Mt. Everest. J Appl Physiol 73: 1815–1819. 1992.PubMedGoogle Scholar
  53. 53.
    Westerterp KR, Kayser B, Wouters L, Le Trong JL, and Richalet JP. Energy balance at high altitude of 6,542 m. J Appl Physiol 77: 862–866., 1994.PubMedGoogle Scholar
  54. 54.
    Westerterp KR, Meijer EP, Rubbens M, Robach P, and Richalet JP. Operation Everest III: energy and water balance. Pflugers Arch 439: 483–488. 2000.PubMedCrossRefGoogle Scholar
  55. 55.
    Westerterp KR, Robach P, Wouters L, and Richalet JP. Water balance and acute mountain sickness before and after arrival at high altitude of 4,350 m. J Appl Physiol 80: 1968–1972. 1996.PubMedGoogle Scholar
  56. 56.
    Westerterp-Plantenga MS. Effects of extreme environments on food intake in human subjects. Proc Nutr Soc 58: 791–798. 1999.PubMedCrossRefGoogle Scholar
  57. 57.
    Westerterp-Plantenga MS, Westerterp KR, Rubbens M, Verwegen CR, Richelet JP, and Gardette B. Appetite at “high altitude” [Operation Everest III (Comex-′97)]: a simulated ascent of Mount Everest. J Appl Physiol 87: 391–399. 1999.PubMedGoogle Scholar
  58. 58.
    Woods SC, Schwartz MW, Baskin DG, and Seeley RJ. Food intake and the regulation of body weight. Annu Rev Psychol 51: 255–277. 2000.PubMedCrossRefGoogle Scholar
  59. 59.
    Young PM, Rose MS, Sutton JR, Green HJ, Cymerman A, and Houston CS. Operation Everest II: plasma lipid and hormonal responses during a simulated ascent of Mt. Everest. J Appl Physiol 66: 1430–1435. 1989.PubMedGoogle Scholar
  60. 60.
    Zamboni M, Armellini F, Turcato E, Robbi R, Micciolo R, Todesco T, Mandragona R, Angelini G, and Bosello O. Effect of altitude on body composition during mountaineering expeditions: interrelationships with changes in dietary habits. Ann NutrMetab 40: 315–324. 1996.CrossRefGoogle Scholar
  61. 61.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, and Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–432. 1994.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Matthias Tschöp
    • 1
  • Katherine M. Morrison
    • 2
  1. 1.Lilly Research LaboratoriesEli Lilly and Co.IndianapolisUSA
  2. 2.Department of PaediatricsMcMaster UniversityHamiltonCanada

Personalised recommendations