Hypoxia pp 189-205 | Cite as

Lessons to better understanding of hypoxia sensing

Acquired and congenital mutations resulting in polycythemia
  • Josef T. Prchal
  • Vladimir Divoky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 502)


Adaptation of the organism to hypoxia has profound effect on multiple tissues including regulation of erythropoiesis, vasculogenesis, a proper regulation of embryogenesis as well as other functions. The elucidation of those congenital or acquired mutations giving rise to disease states affecting physiological systems devoted to oxygen homeostasis provides not only a practical diagnostic and potential therapeutic target, but also allows to identify the essential, non-redundant physiological pathways that may be hitherto unknown. The erythropoietin gene was the first gene expression found to be upregulated by hypoxia; the mechanism of this regulation lead to our current understanding of hypoxia sensing. Thus it is appropriate that the disorders resulting from augmented erythropoiesis are subject of this review.

Key words

erythropoiesis erythropoietin erythropoietin receptor mutations in polycythemia hypoxia-inducible factor 1 Chuvash polycythemia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamson JW, Fialkow PJ, Murphy S, Prchal JF, and Steinmann L. Polycythemia vera: stem cell and probable clonal origin of the disease. N Engl J Med 295: 913–916, 1976.PubMedCrossRefGoogle Scholar
  2. 2.
    Andersson P, Le Blanc K, Eriksson BA, and Samuelsson J. No evidence for an altered mRNA expression or protein level or haematopoietic cell phosphate in CD34+ bone marrow progenitor cells or mature peripheral blood cells in polycythemia vera. Eur J Haematol 59:310–317, 1997.PubMedCrossRefGoogle Scholar
  3. 3.
    Ang SO, Buchannan GR, Gordeuk VR, and Prchal JT. Putative dysregulation in the HIF-oxygen sensing pathway in congenital Chuvash polycythemia. Blood 94 (suppl. 1): 412a, 1999 (abstr.).Google Scholar
  4. 4.
    Ang SO, Gordeuk VR, Sergeyeva A, and Prchal JT. Chuvash polycythemia: An autosomal recessive disorder of dysregulated oxygen sensing. Blood 96 (suppl. 1): 5a, 2000 (abstr.).Google Scholar
  5. 5.
    Arcasoy MO, Harris KW, and Forget BG. A human erythropoietin receptor gene mutant causing familial erythrocytosis is associated with deregulation of the rates of Jak2 and Stat5 inactivation. Exp Hematol 27: 63–74, 1999.PubMedCrossRefGoogle Scholar
  6. 6.
    Asimakopoulos F, Hinshelwood S, Gilbert J, Delibrias C, Gottgens B, Fearon D, and Green A. The gene encoding hematopoietic cell phophatase (SHP-1) is structurally and transcriptionally intact in polycythemia vera. Oncogene 14: 1215–1222, 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Brox AG, Congote LF, Fafard J, and Fauser AA. Identification and characterization of an 8-kd peptide stimulating late erythropoiesis. Exp Hematol 17: 769–773, 1989.PubMedGoogle Scholar
  8. 8.
    Bunn HF and Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76: 839–885, 1996.PubMedGoogle Scholar
  9. 9.
    Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman, M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, and Keshert E. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: 485–490, 1998.PubMedCrossRefGoogle Scholar
  10. 10.
    Casadevall N, Vainchenker W, Laconbe C, Vinci G, Chapman J, Breton-Gorius J, and Varet B. Erythroid progenitors in polycythemia vera: Demonstration of their hypersensitivity to erythropoietin using serum free cultures. Blood 59: 447–451, 1982.PubMedGoogle Scholar
  11. 11.
    Chiba S, Takahashi T, Takeshita K, Minowada J, Yazaki Y, Ruddle FH, and Hirai H. Selective expression of mRNA coding for the truncated form of erythropoietin receptor in hematopoietic cells and its decrease in patients with polycythemia vera. Blood 90: 97–104, 1997.PubMedGoogle Scholar
  12. 12.
    Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh, CW, Ratcliffe PJ, and Maxwell PH. Hypoxia inducible factor-a binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275: 25733–25741, 2000.PubMedCrossRefGoogle Scholar
  13. 13.
    Correa PN and Axelrad AA. Production of erythropoietic bursts by progenitor cells from adult human peripheral blood in an improved serum-free medium: Role of insulin-like growth factor I. Blood 78: 2823–2833, 1991.PubMedGoogle Scholar
  14. 14.
    Correa PN, Eskinazi D, and Axelrad AA. Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like growth factor I in vitro: studies in an improved serum-free medium. Blood 83: 99–112, 1994.PubMedGoogle Scholar
  15. 15.
    Dai CH, Krantz SB, Dessypris EN, Means RT, Horn ST, and Gilbert HS. Polycythemia vera II. Hypersensitivity of bone marrow erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood 80: 891–899, 1992.PubMedGoogle Scholar
  16. 16.
    Dai CH, Krantz SB, Means RT, Horn ST, and Gilbert HS. Polycythemia vera blood burst forming units-erythroid are hypersensitive to interleukin-3. J Clin Invest 87: 391–396, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Dai CH, Krantz SB, and Sawyer ST. Polycythemia vera V. Enhanced proliferation and phosphorylation due to vanadate are diminished in polycythemia vera erythroid progenitor cells: a possible defect of phosphate activity in polycythemia vera. Blood 89: 3574–3581, 1997.PubMedGoogle Scholar
  18. 18.
    Damen JE, Krosl J, Morrison D, Pelech S, and Krystal G. The hyperresponsiveness of cells expressing truncated erythropoietin receptors is contingent upon insulin-like growth factor-1 in fetal calf serum. Blood 92: 425–433, 1998.PubMedGoogle Scholar
  19. 19.
    Damen JE, Wakao H, Miyajima A, Krosl J, Humphries RK, Cutler RL, and Krystal G. Tyrosine 343 in the erythropoietin receptor positively regulates erythropoietin-induced cell proliferation and STAT5 activation. EMBO J 14: 5557–5568, 1995.PubMedGoogle Scholar
  20. 20.
    D’Andrea AD, Yoshimura A, Youssoufian H, Zon LI, Koo J-W, and Lodish HF. The cytoplasmic region of the erythropoietin receptor contains non-overlapping positive and negative growth-regulatory domains. Mol Cell Biol 11:1980–1987, 1991.PubMedGoogle Scholar
  21. 21.
    Divoky V, Liu Z, Ryan TM, Prchal JF, Townes TM, and Prchal JT. Mouse model of congenital polycythemia: Homologous replacement of murine gene by mutant human erythropoietin receptor gene. Proc Natl Acad Sci USA 98: 986–991, 2001.PubMedCrossRefGoogle Scholar
  22. 22.
    Dmitrieva MG, Gazenko LO, and Poliakova LA. Characteristics of the humoral regulation of erythropoiesis in hereditary erythrocytosis in the Chuvash ASSR. Dokl Akad Nauk SSSR 296: 1021–1024, 1987 (Russian).PubMedGoogle Scholar
  23. 23.
    Ebert BL and Bunn HF. Regulation of the erythropoietin gene. Blood 94: 1864–1877, 1999.PubMedGoogle Scholar
  24. 24.
    Emanuel PD, Eaves CJ, Broudy VC, Papayannopoulou T, Moore MR, D’ Andrea AD, Prchal JF, Eaves AC, and Prchal JT. Familial and congenital polycythemia in three unrelated families. Blood 79: 3019–3030, 1992.PubMedGoogle Scholar
  25. 25.
    Fisher M J, Prchal JF, Prchal JT, and D’Andrea AD. Anti-erythropoietin (EPO) receptor monoclonal antibodies distinguish EPO-dependent and EPO-independent erythroid progenitors in polycythemia. Blood 84: 1982–1991, 1994.PubMedGoogle Scholar
  26. 26.
    Galacteros F, Rosa R, Prehu MO, Najean Y, and Calvin MC. Deficit en diphosphoglycerate mutase: nouveaux cas associes a une Polyglobulie. Nouv Rev Fr Hematol 26: 69–74, 1982 (French).Google Scholar
  27. 27.
    Gomez AR and Norwood VF. Developmental consequences of the renin-angiotensin system. Am J Kidney Dis 26: 409–431, 1995.PubMedCrossRefGoogle Scholar
  28. 28.
    Gomez AR. Angiotensin receptors: Relevance in development and disease states. Exp Nephrol 2: 259–268, 1994.PubMedGoogle Scholar
  29. 29.
    Gregg XT, Liu Y, Prchal JT, Gartland GT, Cooper MD, and Prchal JF. Clonality in myeloproliferative disorders. Blood 88 (suppl. 1): 1905a, 1996 (abstr.).Google Scholar
  30. 30.
    Gregg XT and Prchal JT. Erythropoietin receptor mutations and human disease. Semin Hematol 34: 70–76, 1997.PubMedGoogle Scholar
  31. 31.
    Hess G, Rose P, Gamm H, Papadileris S, Huber C, and Seliger B. Molecular analysis of the erythropoietin receptor system in patients with polycythemia vera. Br J Haematol 88: 794–802, 1994.PubMedCrossRefGoogle Scholar
  32. 32.
    Horikawa Y, Matsumura I, Hashimoto K, Shiraga M, Kosugi S, Tadokoro S, Kato T, Miyazaki H, Tomiyama Y, Kurata Y, Matsuzawa Y, and Kanakura Y. Markedly reduce expression of platelet c-mpl receptor in essential thrombocythemia. Blood 90: 4031–4038, 1997.PubMedGoogle Scholar
  33. 33.
    Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, and Semenza GL. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 a. Genes Dev 12:149–162, 1998.PubMedCrossRefGoogle Scholar
  34. 34.
    Julian BA, Brantley RR Jr, Barker CV, Stopka T, Gaston RS, Curtis JJ, Lee JY, and Prchal JT. Losartan, an angiotensin II type 1 receptor antagonist, lowers hematocrit in posttransplant erythrocytosis. J Am Soc Nephrol 9: 1104–1108, 1998.PubMedGoogle Scholar
  35. 35.
    Juvonen E, Ikkala E, Fyhrquist F, and Ruutu T. Autosomal dominant erythrocytosis causes by increased sensitivity to erythropoietin. Blood 78: 3066–3069, 1991.PubMedGoogle Scholar
  36. 36.
    Katoh O, Kimura A, Itoh T, and Kuramoto A. Platelet derived growth factor messenger RNA is increased in bone marrow megakaryocytes in patients with myeloproliferative disorders. Am J Hematol 35: 145–150, 1990.PubMedCrossRefGoogle Scholar
  37. 37.
    Klingmuller U, Lorenz U, Cantley LC, Neel BG, and Lodish HF. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80: 729–738, 1995.PubMedCrossRefGoogle Scholar
  38. 38.
    Konwalinka G, Geissler D, Peschel C, Breier C., Grunewald K, Odavic R, and Braunsteiner H. Human erythropoiesis in vitro and the source of burst-promoting activity in a serum-free system. Exp Hematol 14: 899–903, 1986.PubMedGoogle Scholar
  39. 39.
    Kralovics R, Castillos FA, and Prchal JT. Familial polycythemia vera: Mode of inheritance, clonality and genetic analysis of candidate genes and chromosomal regions. Blood 94 (suppl. 1): 113a, 1999 (abstr.).Google Scholar
  40. 40.
    Kralovics R, Indrak K, Stopka T, Berman BW, Prchal JF, and Prchal JT. Two new EPO receptor mutations: Truncated EPO receptors are most frequently associated with primary familial and congenital polycythemias. Blood 90: 2057–2061, 1997.PubMedGoogle Scholar
  41. 41.
    Kralovics R and Prchal JT. Hematopoietic progenitors and signal transduction in polycythemia vera and primary thrombocythemia. Bailliere’s Clin Haematol 11: 803–818, 1998.CrossRefGoogle Scholar
  42. 42.
    Kralovics R and Prchal JT. Congenital and inherited polycythemia. Curr. Opin. Pediat 12:29–34, 2000.CrossRefGoogle Scholar
  43. 43.
    Kralovics R and Prchal JT. Involvement of chromosome 9 and 11 in familial and sporadic polycythemia vera. Exp Hemat 28 (suppl.): 65a, 2000 (abstr.).CrossRefGoogle Scholar
  44. 44.
    Kralovics R and Prchal JT. Genetic heterogeneity of primary familial and congenital polycythemia. Am J Hematol, in press, 2001.Google Scholar
  45. 45.
    Kralovics R, Sokol L, Broxson E, and Prchal JT. The erythropoietin receptor gene is not linked with polycythemia phenotype in a family with autosomal dominant primary polycythemia. Proc Assoc Am Phys 109: 580–585, 1997.PubMedGoogle Scholar
  46. 46.
    Kralovics R, Sokol L, and Prchal JT. Absence of polycythemia phenotype in a child in with a unique EPO receptor mutation. J Clin Invest 102: 124–129, 1998.PubMedCrossRefGoogle Scholar
  47. 47.
    Krantz SB. Erythropoietin. Blood 11: 419–434, 1991.Google Scholar
  48. 48.
    Le Blanc K, Berg A, Palmblad J, and Samuelsson J. Stimulus-specific defect in platelet aggregation in polycythemia vera. Eur J Haematol 53: 145–149, 1994.PubMedCrossRefGoogle Scholar
  49. 49.
    Le Couedic JP, Mitjavila MT, Villeval JL, Feger F, Gobert S, Mayeux P, Casadevall N, and Vainchenker W. Missense mutation of the erythropoietin receptor is a rare event in human erythroid malignancies. Blood 87: 1502–1511, 1996.PubMedGoogle Scholar
  50. 50.
    Lichtman M, Murphy M, and Adamson J. Detection of mutant hemoglobins with altered affinity for oxygen. A simplified technique. Ann Intern Med 84: 517–520, 1976.PubMedGoogle Scholar
  51. 51.
    Marine JC, McKay C, Wang D, Topham DJ, Parganas E, Nakajima H, Pendeville H, Yasukawa H, Sasaki A, Yoshimura A, and Ihle JN. SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 98: 617–627, 1999.PubMedCrossRefGoogle Scholar
  52. 52.
    Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, and Bernstein KE. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 273: 247–250, 1995.CrossRefGoogle Scholar
  53. 53.
    Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh,CW, Maher ER, and Ratcliffe PJ.: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275, 1999.PubMedCrossRefGoogle Scholar
  54. 54.
    McLellan KC, Hooper SB, Bocking AD, Delhanty PJ, Phillips ID, Hill DJ, and Han VK. Prolonged hypoxia induced by the reduction of maternal uterine blood flow alters insulin-like growth factor-binding protein-1 (IGFBP-1) and IGFBP-2 gene expression in the ovine fetus. Endocrinology 131: 1619–1628, 1992.PubMedCrossRefGoogle Scholar
  55. 55.
    Mirza AM, Ezzat S, and Axelrad A. Insulin-like growth factor binding protein-1 is elevated in patients with polycythemia vera and stimulates erythroid burst formation in vitro. Blood 89: 1862–1869, 1997.PubMedGoogle Scholar
  56. 56.
    Moliterno A, Hankins W, and Spivak J. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N Engl J Med 338: 572–580, 1998.PubMedCrossRefGoogle Scholar
  57. 57.
    Mrug M, Stopka T, Julian BA, Prchal JF, and Prchal JT. Angiotensin II stimulates proliferation of normal early erythroid progenitors. J Clin Invest 115: 508–522, 1997.Google Scholar
  58. 58.
    Nakamura Y and Nakauchi H. A truncated erythropoietin receptor and cell death: A reanalysis. Science 264: 588–589, 1994.PubMedCrossRefGoogle Scholar
  59. 59.
    Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, and Kaelin WG. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2: 423–427, 2000.PubMedCrossRefGoogle Scholar
  60. 60.
    Orkin SH and Zon LI. Genetics of erythropoiesis: induced mutations in mice and zebrafish. Annu Rev Genet 31: 33–60, 1997.PubMedCrossRefGoogle Scholar
  61. 61.
    Pahl HL. Towards a molecular understanding of polycythemia rubra vera. Eur J Biochem 267:3395–401, 2000.PubMedCrossRefGoogle Scholar
  62. 62.
    Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, and Ihle JN. JAK2 is essential for signaling through a variety of cytokine receptors. Cell 93: 385–395, 1998.PubMedCrossRefGoogle Scholar
  63. 63.
    Perazella M, McPhedran P, Kliger A, Lorber M, Levy E, and Bia MJ. Enalapril treatment of post-transplant erythrocytosis: efficacy independent of circulating erythropoietin levels. Am J Kidney Dis 26: 495–500, 1995.PubMedCrossRefGoogle Scholar
  64. 64.
    Poliakova LA. Familial erythrocytosis among inhabitants of the Chuvash ASSR. Probl Gematol Pereliv Krovi 19: 30–33, 1974 (Russian).PubMedGoogle Scholar
  65. 65.
    Prchal JF and Axelrad AA. Letter: Bone-marrow responses in polycythemia vera. N Eng J Med 290: 1392, 1974 (lett).Google Scholar
  66. 66.
    Prchal JF and Prchal JT. Molecular basis for polycythemia. In: Current Opinion in Hematology 6. Lippincott Williams & Wilkins, Inc., 1999, p. 100–109.Google Scholar
  67. 67.
    Prchal JT, Crist WM, Goldwasser E, Perrine G, and Prchal JF. Autosomal dominant polycythemia. Blood 66: 1208–1214, 1985.PubMedGoogle Scholar
  68. 68.
    Prchal JT and Jenkins M. Congenital and Acquired Abnormality of Hemoglobin. In: 21 st edition of Cecil Textbook of Medicine. Philadelphia: W.B. Saunders Co., 2000.Google Scholar
  69. 69.
    Prchal JT and Sokol L. Benign erythrocytosis and other familial and congenital polycythemias. Eur J Hematol 57: 263–68, 1996.CrossRefGoogle Scholar
  70. 70.
    Prchal JT, Prchal JF, Kralovics R, Eskinazi D, and Axelrad AA. Sensitivities of erythroid progenitor cells to erythropoietin (EPO) and insulin-like growth factor-1 (IGF-1) in patients with primary familial and congenital polycythemia (PFCP): Studies in strictly serum-free conditions. Exp Hematol 26 (suppl): 239, 1998 (abstr.).Google Scholar
  71. 71.
    Ray PE, Aguilera G, Kopp JB, Horikoshi S, and Klotman PE. Angiotensin II receptor-mediated proliferation of cultured human fetal mesangial cells. Kidney Int 40: 764–771, 1991.PubMedCrossRefGoogle Scholar
  72. 72.
    Ryan HE, Lo J, and Johnson RS. HIF-1 a is required for solid tumor formation and embryonic vascularization. EMBO J 17: 3005–3015, 1998.PubMedCrossRefGoogle Scholar
  73. 73.
    Samuelsson J, Forslid J, Hed J, and Palmblad J. Studies of neutrophil and monocyte oxidative responses in polycythemia vera and related myeloproliferative disorders. Br J Haematol 87: 464–470, 1994.PubMedCrossRefGoogle Scholar
  74. 74.
    Sasaki A, Yasukoawa H, Shouda T, Kitamura T, Dikic I, and Yoshimura I. Cis3/SOCS3 suppresses erythropoietin signaling by binding to EPOR and JAK2. J Biol Chem 275: 29338–29347, 2000.PubMedCrossRefGoogle Scholar
  75. 75.
    Sato T, Maekawa T, Watanabe S, Tsuji K, and Nakahata T. Erythroid progenitors differentiate and mature in response to endogenous erythropoietin. J Clin Invest 106: 263–270, 2000.PubMedCrossRefGoogle Scholar
  76. 76.
    Schultz LD, Schweitzer PA, Rajan TV, Taolin Y, Ihle JN, Matthews RJ, Thomas ML, and Beier DR. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73: 1445–1454, 1993.CrossRefGoogle Scholar
  77. 77.
    Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 35:71–103, 2000.PubMedCrossRefGoogle Scholar
  78. 78.
    Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Marie P, and Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 111: 32529–37, 1996.Google Scholar
  79. 79.
    Semenza GL, Roth PH, Fang HM, and Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor. J Biol Chem 269: 23757–23763, 1994.PubMedGoogle Scholar
  80. 80.
    Semenza GL and Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12: 5447–5454, 1992.PubMedGoogle Scholar
  81. 81.
    Sergeyeva A, Gordeuk VR, Tokarev YN, Prchal JF, Sokol L, and Prchal JT. Congenital polycythemia in Chuvashia. Blood 89: 2148–2154, 1993.Google Scholar
  82. 82.
    Shih LY and Lee CT. Identification of masked polycythemia vera from patients with idiopathic marked thrombocytosis by endogenous erythroid colony assay. Blood 83: 744–748, 1994.PubMedGoogle Scholar
  83. 83.
    Silva M, Richard C, Benito A, Sanz C, Olalla I, and Fernandez-Luna JL. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. New Engl J Med 338: 564–571, 1998.PubMedCrossRefGoogle Scholar
  84. 84.
    Socolovsky M, Dusanter-Fourt I, and Lodish HF. Prolactin receptor and severely truncated erythropoietin receptors support differentiation of erythroid progenitors. J Biol Chem 272: 14009–14012, 1997.PubMedCrossRefGoogle Scholar
  85. 85.
    Sokol L, Prchal JF, and Prchal JT. Primary familial and congenital polycythaemia. Lancet 342: 115–116, 1993 (lett).PubMedCrossRefGoogle Scholar
  86. 86.
    Sokol L and Prchal JT: Two microsatellite repeat polymorphisms in the EPO gene. Hum Mol Genet 3: 219–220, 1994.PubMedCrossRefGoogle Scholar
  87. 87.
    Stewart S, Zhu B, and Axelrad AA. A ‘serum-free’ medium for the production of erythropoietic bursts by murine bone marrow cells. Exp Hematol 12: 309–318, 1984.PubMedGoogle Scholar
  88. 88.
    Stopka T, Zivny JH, Stopkova P, Prchal JF, and Prchal JT. Human hematopoietic progenitors express erythropoietin. Blood 91: 3766–3772, 1988.Google Scholar
  89. 89.
    Streuli M. Protein tyrosine phosphates in signaling. Cur Opin Cell Biol 8: 182–188, 1996.CrossRefGoogle Scholar
  90. 90.
    Sui X, Krantz SB, and Zhao Z. Identification of increased protein tyrosine phosphatase activity in polycythemia vera erythroid progenitor cells. Blood 90: 651–657, 1997.PubMedGoogle Scholar
  91. 91.
    Sutter CH, Laughner E, and Semenza GL. Hypoxia-inducible factor 1α protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA 97: 4748–4753, 2000.PubMedCrossRefGoogle Scholar
  92. 92.
    Tanimoto K, Makino Y, Pereira T, and Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-la by the von Hippel-Lindau tumor suppressor protein. EMBOJ 19: 4298–4309, 2000.CrossRefGoogle Scholar
  93. 93.
    Temerinac S, Klippel S, Strunck E, Roder S, Lubbert M, Lange W, Azemar M, Meinhardt G, Schaefer HE, and Pahl HL. Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is overexpressed in polycythemia rubra vera. Blood 95: 2569–2576, 2000.PubMedGoogle Scholar
  94. 94.
    Tokarev IN, Poliakova LA, Alekseev GA, Soboleva SS, and Glasko EN. Hereditary erythrocytosis. Probl Gematol Pereliv Krovi 24: 3–8, 1979 (Russian).Google Scholar
  95. 95.
    Tufro-Meddie A and Gomer RA. Ontogeny of the renin-angiotensin system. Semin Nephrol 13: 519–530, 1993.Google Scholar
  96. 96.
    Ushikubi F, Ishibashi T, Narumiya S, and Okuma M. Analysis of the defective signal transduction mechanism through the platelet thromboxane A2 receptor in a patient with polycythemia vera. Thromb Haemost 67: 144–146, 1992.PubMedGoogle Scholar
  97. 97.
    Wang GL and Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270: 1230–1237, 1995.PubMedCrossRefGoogle Scholar
  98. 98.
    Weinberg RS. In vitro erythropoiesis in polycythemia vera and other myeloproliferative disorders. Semin Hematol 34: 64–69, 1997.PubMedGoogle Scholar
  99. 99.
    Westwood NB and Pearson TC. Diagnostic application of haemopoietic progenitor culture techniques in polycythaemias and thrombocythaemias. Leuk Lymphoma 22 (suppl. 1): 95–103, 1996.PubMedCrossRefGoogle Scholar
  100. 100.
    Wickrema A, Chen F, Namin F, Yi T, Ahmad S, Uddin S, Chen YH, Feldman L, Stock W, Hoffman R, and Platanias LC. Defective expression of the SHP-1 phosphatase in polycythemia vera. Exp Hematol 27: 1124–32, 1999.PubMedCrossRefGoogle Scholar
  101. 101.
    Wiener CM, Booth G, and Semenza GL. In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun 225: 485–488, 1996.PubMedCrossRefGoogle Scholar
  102. 102.
    Witthuhn B, Quelle F, Silvennoinen O, Ui T, Tang B, Miura O, and Ihle J. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74: 227–238, 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Josef T. Prchal
    • 1
  • Vladimir Divoky
    • 2
  1. 1.Division of Hematology/OncologyBaylor College of MedicineHoustonUSA
  2. 2.Departments of Biology and Hematology/Oncology, Faculty of MedicinePalacky UniversityOlomoucCzech Republic

Personalised recommendations