Advertisement

CORDIC Algorithm

  • Jouko Vankka
  • Kari Halonen
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 614)

Abstract

Algorithms used in communication technology require the computation of trigonometric functions, coordinate transformations, vector rotations, or hyperbolic rotations. The CORDIC, an acronym for COordinate Rotation DIgital Computer, algorithm offers an opportunity to calculate the desired functions in a rather simple and elegant way. The CORDIC algorithm was first introduced by Voider [Vol59]. Walter [Wal71] later developed it into a unified algorithm to compute a variety of transcendental functions. Two basic CORDIC modes leading to the computation functions exist, the rotation mode and the vectoring mode. For both modes the algorithm can be realized as an iterative sequence of additions/subtractions and shift operations which are rotations by a fixed rotation angle, but with a variable rotation direction. Due to the simplicity of the operations involved, the CORDIC is very well suited for a VLSI realization ([Sch86], [Dur87], [Lee89], [Not88], [Bu88], [Cav88a], [Cav88b], [Lan88], [Sar98], [Kun90], [Lee92], [Hu92b], [Fre95], [Hsi95], [Phi95], [Ahn98], [Dac98], [Mad99]). It has been implemented in pocket calculators like Hewlett Packard’s HP-35 [Coc92], and in arithmetic coprocessors like Intel 8087.

Keywords

Rotation Mode Inverse Tangent CORDIC Algorithm Direct Digital Synthesizer Elementary Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jouko Vankka
    • 1
  • Kari Halonen
    • 1
  1. 1.Helsinki University of TechnologyFinland

Personalised recommendations