Biopolymers and Artificial Biopolymers in Biomedical Applications, an Overview



Nowadays, the domains of life-respecting, therapeutic polymeric systems and materials are among the most attractive areas in polymer science. Increasing attention is being paid to polymeric compounds that can be bioassimilated, especially in the field of time-limited therapeutic applications. Basically biopolymers are of interest because of their inherent biodegradability. However, a close look at the requirements to be fulfilled show that only a few of them can be used in the human body. The interest and the strategy to make artificial biopolymers, i.e. polymers of non-natural origin that are made of prometabolite building blocks and that can serve as components of biomedical or pharmacological therapeutic systems, are recalled. A few examples of artificial biopolymers for biomedical applications are presented.


Hyaluronic Acid Malic Acid Fibrin Glue Glycolic Acid Wound Dressing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vert, M., 1986, Polyvalent polymeric drug caniers, In “CRC Critical Reviews -Therapeutic Drug Carrier Systems”, (S.D. Bruck Ed.), CRC Press, Boca Raton, 2: 291–327Google Scholar
  2. 2.
    Vert, M., 1987, Design and synthesis of bioresorbable polymers for controlled release of drugs, in “Controlled release of drugs from polymeri particles and Macromolecules”, (S.S. Davis & L. Illum Eds), Wright IOP Publ. Ltd., Bristol, p.117–125Google Scholar
  3. 3.
    Hoenich, N. A., and Stamp, S., 2000, Clinical investigation of the role of membrane structure on blood contact and solute transport characteristics of a cellulose membrane, Biomaterials 21: 317–324CrossRefGoogle Scholar
  4. 4.
    Draget, K. I., Skjak-Braek, G., and Smidsrod, O., 1994, Alginic acid gels: Effects of alginate chemical composition and molecular weights, Carbohydr. Polym. 25: 31–38CrossRefGoogle Scholar
  5. 5.
    Qin, Y., and Gilding, R. K., 1996, Alginate fibers and wound dressings, Medic. Device Technol. 7: 32–41Google Scholar
  6. 6.
    Mishler, J. M., 1984, Synthetic plasma volume expanders — their pharmacology, safety and clinical efficacy, Clinics in Haematol. 13: 75–92Google Scholar
  7. 7.
    Muzzarelli, R. A. A., 1993, Biochemical significance of exogenous chitin and chitosan in animals and patients, Carbohydr. Polym. 20: 7–16CrossRefGoogle Scholar
  8. 8.
    Davidson, J. M., Nanney, L. B., Broadley, K. N., Whitsett, J. S., Aquino, A. M., Beccaro, M., and Rastrelli, A., 1990, Hyaluronate derivatives and their application to wound healing : Preliminary observations, in Polymer in Medicine — 4, (C. Migliaresi, E. Chiellini, P. Giusti and L. Nicolais Eds.), Elsevier Applied Science, London, p.171–177Google Scholar
  9. 9.
    Bourzeix, K., 2000, Biomatériaux articulaires injectables, in “Actualités en Biomatériaux”, (D. Mainard et al., eds.), Editions Romillat, Paris, p.141–146Google Scholar
  10. 10.
    Lee, S. Y., 1996, Bacterial polyhydroxyalkanoates, Biotech. Bioeng. 49: 1–14Google Scholar
  11. 11.
    Lenz, R. W., 1993, Biodegradable Polymers, Adv. Polym. Sci. 107: 1–40CrossRefGoogle Scholar
  12. 12.
    Marois, Y., Zhang, Z., Vert, M., Deng, X., Lenz, R. and Guidoin, R., 1999, Mechanism and rate of degradation of polyhydroxyoctanoate films in aqueous media : a long term study, J. Biomed. Mater. Res. 49: 216–224CrossRefGoogle Scholar
  13. 13.
    Parkany, M., 1984, Polymers of natural origin as biomaterials. 2. Collagen and gelatin, in Macromolecular Biomaterials, (G.W. Hastings and P. Ducheyne Eds.), CRC Press, Boca Raton, p. 111–118Google Scholar
  14. 14.
    Casagranda, F., Ellender, G., Werkmeister, J. A., and Ramshaw, J. A. M., 1994, Evaluation of alternative glutaraldehyde stabilization strategies for collagenous biomaterials, J. Mater. Sci. : Mater. In Med. 5: 332–337CrossRefGoogle Scholar
  15. 15.
    Martinowitz, U., Spotnitz, W. D., and De-Gaetano, G.,1997, Fibrin tissues adhesives. 1997 State of the art, Thromb. Haemost. 78: 661–666Google Scholar
  16. 16.
    Burnouf-Radosewich, M., Burnouf, T., and Huart, J.J., 1990, Biochemical and physical properties of a solvent-detergent-treated fibrin glue, Vox Sang. 58: 77–84CrossRefGoogle Scholar
  17. 17.
    Park, M. S., and Cha, C. A., 1993, Biochemical aspects of autologous fibrin glue derived from ammonium sulfate precipitation, Laryngoscope 103: 193–196CrossRefGoogle Scholar
  18. 18.
    G. Kerényi, 1984, Polymers of natural origin as biomaterials. 1. Fibrin in Macromolecular Biomaterials, (G.W. Hastings and P. Ducheyne Eds.), CRC Press, Boca Raton, p. 91–110Google Scholar
  19. 19.
    Li, S.M., and Vert, M., 1995, Biodegradation of aliphatic polyesters, in “Degradable Polymers: Principles and Applications”, (G. Scott and D. Gilead Eds.), Chapman & Hall, London, p. 43–87CrossRefGoogle Scholar
  20. 20.
    Athanasiou, K. A., Agrawal, C. M., Barber, F. A., and Burkhart, S. S., 1998, Orthopaedic applications for PLA-PGA biodegradablme polymers, Arthroscopy 4; 726–737Google Scholar
  21. 21.
    Marcincinova-Benabdillah, K., Coudane, J., Boustta, M., Engel, R., and Vert, M., 1999, Synthesis and characterization of novel degradable polyesters derived from D-gluconic and glycolic acids, Macromolecules 32: 8774–8780CrossRefGoogle Scholar
  22. 22.
    Braud, C., and Vert, M., 1993, Poly(ß-malic acid) based biodegradable polyesters aimed at pharmacological uses, Trends in Polym. Sci. 3: 57–65Google Scholar
  23. 23.
    Vert, M., 1998, Chemical routes to poly(ß-malic acid) and potential applications of this water soluble bioresorbable poly(ß-hydroxy alkanoate), Polym. Degrad. And Stab. 59: 169–175CrossRefGoogle Scholar
  24. 24.
    Cammas, S., Guérin, Ph., Girault, J. P., Holler, E., Gache, Y., Vert, M., 1993, Natural poly(L-malic acid): NMR shows a poly(3-hydroxy acid)-type structure, Macromolecules 28: 4681–4684.CrossRefGoogle Scholar
  25. 25.
    Fischer, H., Erdmann, S., Holler, E., 1989, An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase a in vitro, Biochemistry 28: 5219–5226.CrossRefGoogle Scholar
  26. 26.
    Boustta, M., Huguet, J., and Vert, M., 1991, New functional polyamides derived from citric acid and L-lysine: Synthesis and characterization, Makromol. Chem., Macromol. Symp., 47: 345–355CrossRefGoogle Scholar
  27. 27.
    Henin, O., Boustta, M., Coudane, J., Domurado, M., Domurado, D., and Vert, M., 1998, Covalent binding of mannosyl ligand via 6-O position and glycolic arm to target a PLCA-type degradable drug carrier toward macrophages, J. Bioact. Comp. Polym. 13 19–32Google Scholar
  28. 28.
    Abdellaoui, K., Boustta, M., Morjani, H., Manfait, M. and Vert, M., 1998, Metabolitederived artificial polymers designed for drug targeting, cell penetration and bioresorption, Europ. J. Pharm. Sci. 6: 61–73CrossRefGoogle Scholar
  29. 29.
    Gautier, S., Boustta, M., and Vert, M., 1997, Poly(L-lysine citramide), a water soluble bioresorbable carrier for drug delivery : Aqueous solution properties of hydrophobized derivatives, J. Bioact. Comp. Polym. 12: 77–98Google Scholar
  30. 30.
    Rossignol, H., Boustta, M. Vert, 1999, Synthetic poly(ß-hydroxyalkanoates) with carboxylic acid or primary amine pendent groups and their complexes, Intern. J. Biol. Macromol. 25: 255–264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  1. 1.Faculty of Pharmacy, CRBA — UMR CNRS 5473University Montpellier 1MontpellierFrance

Personalised recommendations