Laccase — a Useful Enzyme for Modification of Biopolymers

  • Kristiina Kruus
  • Marja-Leena Niku-Paavola
  • Liisa Viikari


Laccases are an interesting group of multi-copper enzymes, which have potential within various applications. They have surprisingly broad substrate specificities and can oxidize simple diphenols, polyphenols, diamines, and aromatic amines. Laccases oxidize their substrates by a one-electron transfer mechanism. Molecular oxygen is used as an electron acceptor. The substrate loses a single electron and usually forms a free radical. Laccases are widely distributed in nature. The best known laccase producers are from fungal origin. They have several functions in nature e.g. are involved in both polymerisation and de-polymerisation processes of lignin. Laccases have been used successfully in bioglueing of lignocellulose material in order to produce lignocellulose based composites, like fibre or particle boards. Promising results with laccases have also been achieved in grafting reactions. Oxidation of biopolymer substrates such as starch or cellulose has been carried out with laccases combined with mediators.


Wood Fibre Broad Substrate Specificity Urea Formaldehyde Laccase Producer Urea Formaldehyde Resin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thurston, C.F. 1994. The structure and function of fungal laccases. Microbiology 140: 19–26.CrossRefGoogle Scholar
  2. 2.
    Bourbonnais, R., and Paice, M.1990. Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Leu. 267: 99–102.CrossRefGoogle Scholar
  3. 3.
    Bourbonnais, R., and Paice, M.G. 1992. Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl. Microbiol. Biotechnol. 36: 823–827.CrossRefGoogle Scholar
  4. 4.
    Call, H-P., Process for Modifying, Breaking down or Bleaching Lignin, Materials Containing Lignin or Like Substances. PCT world patent application WO 94/29510.Google Scholar
  5. 5.
    Call, H.P., and Mucke, I. 1997. History, owerview and applications of inediated lignolytic systems, especially laccase-mediator-system (Lignozyme-process). J. Biotechnology 53: 163–202.CrossRefGoogle Scholar
  6. 6.
    Gianfreda, L., Xu, F., and Bollag, J-M. 1999. Laccases: a useful group of oxidoreductive enzymes. Bioremediation J. 3(1): 1–25.CrossRefGoogle Scholar
  7. 7.
    Xu, F., 1999. Recent process in laccase study: properties, enzymology, production, and applications. In: The encyclopedia of bioprocessing technology: fermentation, biocatalysis and bioseparation (Flickinger, M.C., and Drew, S.W. eds.) John Wiley&Sons, New York, pp. 1545–1554.Google Scholar
  8. 8.
    Haars, A., and Huttermann, A. 1983. Binder for wood materials. German Patent DE3037992.Google Scholar
  9. 9.
    Haars, A., Kharazipour, A., Zanker, H., and Huttermann, A. 1989. Room-temperature curing adhesives based on lignin and phenoloxidases. ACS Symp.Ser. 385: 126–134.CrossRefGoogle Scholar
  10. 10.
    Viikari, L., Hase, A., Qvintus-Leino, P., Kataja, K., Tuominen, S., and Gädda, L. A new adhesive for fibre boards. PCT Word patent application WO 98/31762.Google Scholar
  11. 11.
    Kharazipour, A., Huttermann, A., Kuhne, G., and Rong, M. 1993. Verfahren zum Verkleben von Holzfragmenten und nach dem Verfahren hergestellte Formkörper. European Patent 0565109.Google Scholar
  12. 12.
    Kharazipour, A, Bergmann, K., Nonninger, K., and Huttermann, 1998. Properties of fibre boards obtained by activation of the middle lamella lignin of wood fibres with peroxidase and H202 before conventional pressing. J.Adhesion Sci. Technol. 12: 1045–1053.CrossRefGoogle Scholar
  13. 13.
    Felby, C., Pedersen, L.S., and Nielsen, B.R. 1997. Enhanced auto adhesion of wood fibres using phenol oxidases. Holzforschung 51: 281–286.CrossRefGoogle Scholar
  14. 14.
    Felby, C., Nielsen, B.R., Olesen, P.O., and Skibsted, L.H. 1997. Identification and quantification of radical reaction intermediates by electron spin resonance spectrometry of laccase-catalyzed oxidation of wood fibres from beech (Fagus sylvatica). Appl. Microbiol Biotechnol 48: 459–464.CrossRefGoogle Scholar
  15. 15.
    Nimz, H.H., Gurang, I., and Mogharab, I. 1976. Untersuchungen zur Vernezung technischer Sulfitablage. Liebigs Ann. Chem. 1421–1434.Google Scholar
  16. 16.
    Mai, C., Milstein, O., and Huttermann, A 1999. Fungal laccase grafts acrylamide onto lignin in presence of peroxides. Appl. Microbiol. Biotechnol. 51: 527–531.CrossRefGoogle Scholar
  17. 17.
    Mai, C., Milstein, O., and Hutterman, A., 2000. Chemoenzymatical grafting of acrylamide onto lignin. J. Biotechnol. 79: 173–183.CrossRefGoogle Scholar
  18. 18.
    Ikeda, R., Sugihara, J., Uyama, H., and Kobayashi, S. 1998. Enzymatic oxidative polymerization of 4-hydroxybenzoic acid derivatives to poly(phenylene oxide)s. Polymer International 47: 295–301.CrossRefGoogle Scholar
  19. 19.
    Pedersen, L.S., Felby, C., and Munk, N. (1997) Process for increasing the charge on a lignocellulosic material and products obtained thereby. Patent WO 9729237.Google Scholar
  20. 20.
    Röper, H. 1996. Applications of starch and its derivatives. Carbohydrates in Europe 14: 22–30.Google Scholar
  21. 21.
    Viikari, L., Niku-Paavola, M-L., Buchert, J., Forssell, P., Teleman, A., and Kruus, K. 2000. Menetelmä hapetetun tärkkelyksen valmistamiseksi. Finnish Patetnt FI 105690.Google Scholar
  22. 22.
    Kierulff, J.V. Modification of polysaccharides by means of phenol oxidizing enzyme. PCT world patent application WO 99/32652.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Kristiina Kruus
    • 1
  • Marja-Leena Niku-Paavola
    • 1
  • Liisa Viikari
    • 1
  1. 1.VTT Biotechnology, Tietotie 2, EspooFinland

Personalised recommendations