New Highly Functionalised Starch Derivatives

  • Ute Heinze
  • Vera Haack
  • Thomas Heinze


Pure, well soluble p-toluenesulfonyl (tosyl) starch samples with a DSTos range from 0.4 to 2.0 were prepared by reacting starch with tosyl chloride in the presence of triethylamine dissolved in the solvent N,N-dimethyl acetamide in combination with LiCl. The thermal degradation starts at a temperature of 166 °C for a sample with DSTos of 0.61 which is sufficiently high for subsequent modifications of the remaining OH groups, for instance by acylation reactions. The total DSTos can be determined using the signal of the methyl protons of the tosyl, acetyl or propionyl moieties of peracylated samples. Moreover, the NMR characterisation reveals that a predominant functionalisation at position 2 occurs. On the other hand, 6-O-tosyl starch products can be synthesised via 2-O-acetyl starch which is accessible by a new acylation procedure. The functionalisation patterns of new synthesised polymers with an unusual distribution of functional groups and high DS values were unambiguously characterised by various NMR techniques.


Sulfonyl Chloride Starch Sample Starch Product Tosyl Chloride Starch Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heinze, Th., Glasser, W.G., 1998, The role of novel solvents and solution complexes for the preparation of highly engineered cellulose derivatives. In Cellulose derivatives: modification, characterization, and nanostructures, (Thomas J. Heinze, Wolfgang G. Glasser, eds.) ACS Symposium Series 688. Washington, DC: American Chemical SocietyCrossRefGoogle Scholar
  2. 2.
    Wurzburg, O.W., 1986, Modified starches: properties and uses. Boca Raton, USA: CRC PressGoogle Scholar
  3. 3.
    Clode, D.M., Horton, D., 1971, Preparation and characterization of the 6-aldehydo derivatives of amylose and whole starch. Carbohydr. Res.; 17: 365–373.CrossRefGoogle Scholar
  4. 4.
    Horton, D., Meshreki, M.H., 1975, Syntheses of 2,3-unsaturated polysaccharides from amylose and xylan. Carbohydr. Res. 40: 345–352.CrossRefGoogle Scholar
  5. 5.
    Teshirogi, T., Yamamoto, H., Sakamoto, M., Tonami, H., 1978, Syntheses and reactions of Aminodeoxycelluloses. Sen-i Gakkaishi 34: T510-T515.CrossRefGoogle Scholar
  6. 6.
    Teshirogi, T., Yamamoto, H., Sakamoto, M., Tonami, H., 1979, Synthesis of mono- and diaminated starches. Sen-i Gakkaishi 35: T479-T485.CrossRefGoogle Scholar
  7. 7.
    Weill, C.E., Kaminsky, M., Hardenbergh, J., 1980, Random substitution of amylose. Carbohydr. Res. 84: 307–313.CrossRefGoogle Scholar
  8. 8.
    Mahoney, J.F., Purves, C.B., New methods for investigating the distribution of ethoxyl groups in a technical ethylcellulose. J. Amer. Chem. Soc. 1942; 64: 9–15.CrossRefGoogle Scholar
  9. 9.
    Horton, D., Luetzow, A.E., Theander, O., 1973, Preparation of 6-chloro-6-deoxyamylose of various degrees of substitution; an alternative route to 6-aldehydoamylose. Carbohydr. Res. 27: 268–272.CrossRefGoogle Scholar
  10. 10.
    Heinze, Th., Schaller, J., 2000, New water soluble cellulose esters synthesized by an effective acylation procedure. Macromol. Chem. Phys. 201: 1214–1218.CrossRefGoogle Scholar
  11. 11.
    Klemm, D., Stein, A., 1995, Silylated cellulose materials in design of supramolecular structures of ultrathin cellulose films. J.M.S.-Pure Appl. Chem. A32: 899–904.Google Scholar
  12. 12.
    Matulova, M., Toffanin, R., Navarini, L., Gilli, R., Paoletti, S., Cesaro, A., 1994, NMR analysis of succinoglycans from different microbial sources: partial assignment of their 1H and 13C NMR spectra and location of the succinate and the acetate groups. Carbohydr. Res. 65: 167–179.CrossRefGoogle Scholar
  13. 13.
    Deus, C., Friebolin, H., Siefert, E., 1991, Partiell acetylierte Cellulose-Synthese und Bestimmung der Substituentenverteilung. Makromol. Chem. 192: 75–83.CrossRefGoogle Scholar
  14. 14.
    Dicke, R., 1999, Ph.D. Thesis, Friedrich Schiller University of Jena, Germany.Google Scholar
  15. 15.
    Hall, D.M., Horne, J.R., 1973, Model compounds of cellulose: trityl ethers substituted exclusively at C-6 primary hydroxyls. J. Appl. Polym. Sci. 17: 2891–2896.CrossRefGoogle Scholar
  16. 16.
    Takahashi, S.-I., Fujimoto, T., Bama, B.M., Miyamoto, T., Inogaki, H., 1986, 13C-NMR spectral studies on the distribution of substituents in some cellulose derivative. J. Polym. Sci., Part A: Polym. Chem. 24: 2981–2993.CrossRefGoogle Scholar
  17. 17.
    Rahn, K., Diamantoglou, M., Klemm, D., Bergmans, H., Heinze, T., 1996, Homogeneous synthesis of cellulose p-toluenesulfonates in N,N-dimethyl acetamide/LiC1 solvent system. Angew. Makromol. Chem. 238: 143–163.CrossRefGoogle Scholar
  18. 18.
    Dicke, R., Rahn, K., Haack, V., Heinze, T., Starch derivatives of high degree of functionalization 2. Determination of the functionalization pattern of p-toluenesulfonyl starch by peracylation and NMR spectroscopy. Carbohydr. Polym., in press.Google Scholar
  19. 19.
    Heinze, T., 1998, Ionische Funktionspolymere aus Cellulose: Neue Synthesekonzepte, Strukturaufklärung und Eigenschaften. Shaker Verlag, AachenGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Ute Heinze
    • 1
  • Vera Haack
    • 1
  • Thomas Heinze
    • 1
  1. 1.Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaJenaGermany

Personalised recommendations