Synthesis of Biopolymers



A number of polymers can be produced via fermentation, using special consortia of microorganisms to convert renewable raw materials (surplus or waste products from agriculture or foresting) into useful products within sustainable processes. The main groups are either extracellular polysaccharides produced by many eukaryotic or prokaryotic microorganisms, or polyhydroxyalkanoates stored intracellularly as reserve products for carbon and energy in a variety of bacteria. In order to lower production costs for these biopolymers, continuous processes have to be designed for the future.


Leuconostoc Mesenteroides Carbon Starvation Autocatalytic Process Prokaryotic Microorganism Pseudomonas Oleovorans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Degli-Innocenti, F., and Bastioli, C, 1998, EDPs based on starch-Mater-Bi. In: ICS UNIDO Environmentally Degradable Polymers, V.98–54243-August 1998–500, pp. 35–42Google Scholar
  2. 2.
    Murphy, P.T., and Whistler, R.L., 1978, Dextrans. In Industrial Gums, Academic Press Inc., pp. 513–542Google Scholar
  3. 3.
    Sutherland, I.W., 1996, Extracellular Polysaccharides. In: Biotechnology Vol. 6, VCH Verlagsgesellschaft Weinheim, FRG, pp. 613–657CrossRefGoogle Scholar
  4. 4.
    Kang, K.S. and Cottrell, I.W, 1979, Polysaccharides. In Microbial Technology Vol.1, Microbial Process, Academic Press New York, p.481Google Scholar
  5. 5.
    Robyt, J.F., and Walseth, T.F., 1978, The mechanism of acceptor reactions of Leuconostoc mesenteroides B512F dextransucrase. Carbohydr. Res. 61: 433–445CrossRefGoogle Scholar
  6. 6.
    Robyt, J.F., and Walseth, T.F., 1979, Production, purification and properties of dextransucrase from Leuconostoc mesenteroides. Carbohydr. Res. 68: 95–111CrossRefGoogle Scholar
  7. 7.
    Slodki, M.E., and Cadmus, M.C., 1978, Production of microbial Polysaccharides. Adv.Appl.Microbiol. 23: 19–54CrossRefGoogle Scholar
  8. 8.
    Casas, J.A., Santos, V. E., Garcia-Ochoa F., 2000, Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzyme Microb. Technol. 26: 282–291CrossRefGoogle Scholar
  9. 9.
    Braunegg, G., Lefebvre, G., and Genser, K., 1998, Polyhydroxyalkanoates, Biopolyesters from renewable resources. J. Biotechnol. 65: 127–161CrossRefGoogle Scholar
  10. 10.
    Braunegg, G., and Bogensberger, B., 1985, Zur Kinetik des Wachstums und der Speicherung von Poly-D(—)-3-hydroxybuttersäure bei Alcaligenes latus. Acta Biotechnol. 4: 339CrossRefGoogle Scholar
  11. 11.
    Braunegg, G., Lefebvre, G., Renner, G., Zeiser, A., Haage, G., and Loidl-Lanthaler, K., 1995, Kinetics as a tool for polyhydroxyalkanoate production optimization. Can.J. Microbiol. 41: 239CrossRefGoogle Scholar
  12. 12.
    Fritsche, K., Lenz, R.W., and Fuller, R.C., 1990, Bacterial polyesters containing branched poly(ß-hydroxyalkanoate) units. Int.J.Biol.Macromol. 12: 92CrossRefGoogle Scholar
  13. 13.
    Fritsche, K., Lenz, R.W., and Fuller, R.C., 1990, Production of unsaturated polyesters by Pseudomonas oleovorans. Int.J.Biol.Macromol. 12: 85CrossRefGoogle Scholar
  14. 14.
    Bear, M. M., Leboucherdurand, M. A., Langlois, V., Lenz, R. W., Goodwin, S., and Guerin P., 1997, Bacterial Poly-3-Hydroxyalkenoates with Epoxy Groups in the SideChains. React. Funct. Polymers 34: 65CrossRefGoogle Scholar
  15. 15.
    Kim, Y. B., Lenz, R. W., and Fuller, R. C., 1991, Preparation and characterization of poly(ß3-hydroxyalkanoates) obtained from Pseudomonas oleovorans grown with mixtures of 5-phenylvaleric acid and n-alkanoic acids. Macromolecules 24: 5256CrossRefGoogle Scholar
  16. 16.
    Abe, C., Taima, Y., Nakamura, Y., and Doi, Y., 1990, New bacterial copolyesters of 3-hydroxyalkanoates and 3-hydroxy-ω-fluoroalkanoates by Pseudomonas oleovorans. Polym. Commun. 31: 404Google Scholar
  17. 17.
    Doi, Y., and Abe, C., 1990, Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoates. Macromolecules 23: 3705CrossRefGoogle Scholar
  18. 18.
    Kim, Y. B., Lenz, R. W., and Fuller, R. C., 1992, Poly(3-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25: 1852CrossRefGoogle Scholar
  19. 19.
    Saito, Y., Nakamura, S., Hiramitsu, M., and Doi, Y., 1996, Microbial Synthesis and Properties of Poly(3- Hydroxybutyrate-co-4-Hydroxybutyrate). Polym. Int. 39: 169CrossRefGoogle Scholar
  20. 20.
    Doi, Y., Tamaki, A., Kunioka, M., and Soga, K., 1987, Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate, and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids. Makromol. Chem., Rapid Commun. 8: 631CrossRefGoogle Scholar
  21. 21.
    Kunioka, M., Nakamura, Y., and Doi, Y., 1988, New bacterial copolyesters produced in Alcaligenes eutrophus from organic acids. Polym. Commun. 29: 174Google Scholar
  22. 22.
    Doi Y., 1990. Microbial polyesters, VCH Publishers Inc., New YorkGoogle Scholar
  23. 23.
    Akita, S., Einaga, Y., and Fujita, H., 1976, Solution properties of Poly(D-ß-hydroxybutyrate).1. Biosynthesis and characterization. Macromolecules 9: 774CrossRefGoogle Scholar
  24. 24.
    Reusch, R. N., 1992, Biological complexes of poly-ß-hydroxybutyrate. FEMS Microbiol. Rev. 103: 119Google Scholar
  25. 25.
    Müller, H.M., and Seebach, D., 1993, Poly(hydroxyfettsäureester), eine fünfte Klasse von physiologisch bedeutsamen organischen Biopolymeren? Angew. Chem. 105: 483CrossRefGoogle Scholar
  26. 26.
    Seebach, D., Brunner, A., Bürger, H. M., Schneider, J., and Reusch, R. N., 1994, Isolation and I H-NMR spectroscopic identification of poly(3-hydroxybutanoate) from prokaryotic and eukaryotic organisms. Determination of the absolute configuration (R) of the monomeric unit 3-hydroxybutanoic acid from Escherichia coli and spinach. Eur. J. Biochem. 224: 317CrossRefGoogle Scholar
  27. 27.
    Aiba, S., Humphrey, A. E., and Millis, N. F., 1973, Biochemical engineering. Second edition. Academic Press, Inc., New YorkGoogle Scholar
  28. 28.
    Zlokarnik, M., 1967, Eignung von Rührern zum Homogenisieren von Flüssigkeitsgemischen. Chemie-Ing.-Techn. 39: 539–548CrossRefGoogle Scholar
  29. 29.
    Levenspiel, O., 1972, Chemical reaction engineering. Second edition. John Wiley & Sons, New YorkGoogle Scholar
  30. 30.
    Steiner, W., 1980, Zum Mischverhalten in chemischen Reaktoren und Bioreaktoren. PhD thesis, University of Technology Graz, Graz, AustriaGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  1. 1.Institut für BiotechnologieTU GrazGrazAustria

Personalised recommendations