Advertisement

The Diffusion Equation

  • Richard Ghez
Chapter

Abstract

We begin with a model for diffusion: the isotropic one-dimensional random walk.1–4 It is so simple that the basic physical processes cannot elude us. It also has a continuum limit, the diffusion equation, whose solutions are our main concern here and some of whose properties we then examine. Conversely, this model forms the basis for numerical methods of solution. We then discuss the diffusion equation’s form in higher dimensions and other physical instances where that equation offers a realistic description. This chapter ends with a brief account of the origin of conservation principles and constitutive relations that pervade transport phenomena.

Keywords

Diffusion Equation Constitutive Relation Explicit Scheme Adjacent Site Jump Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lord Rayleigh, “On James Bernoulli’s Theorem in Probabilities, ” Phil. Mag. 47, 246 (1899). [Reprinted in Scientific Papers 4, p. 370 (Dover, New York, 1964).]CrossRefMATHGoogle Scholar
  2. 2.
    S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy, ” Revs. Mod. Phys. 15, 1 (1943). [Reprinted in Selected Papers on Noise and Stochastic Processes, N. Wax, Ed. (Dover, New York, 1954).]ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    P. G. Shewmon, Diffusion in Solids (McGraw-Hill, New York, 1963).Google Scholar
  4. 4.
    C. C. Lin and L. A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences (MacMillan, New York, 1974).MATHGoogle Scholar
  5. 5.
    H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford University Press, London, 1959).MATHGoogle Scholar
  6. 6.
    D. V. Widder, The Heat Equation (Academic Press, New York, 1975).MATHGoogle Scholar
  7. 7.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Pergamon Press, Oxford, 1963). [Reprinted by Dover, New York.]MATHGoogle Scholar
  8. 8.
    R. Ghez and W. E. Langlois, “More on the Concentration Dependence of Fick’s Laws, ” Amer. J. Phys. 54, 646 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    E. Isaacson and H. B. Keller, Analysis of Numerical Methods (John Wiley, New York, 1966).MATHGoogle Scholar
  10. 10.
    G. D. Smith, Numerical Solutions of Partial Differential Equations: Finite Difference Methods, 3rd ed. (Oxford University Press, Oxford, 1985).Google Scholar
  11. 11.
    R. Courant, K. Friedrichs, and H. Lewy, “Über die Partiellen Differenzengleichungen der Mathematischen Physik, ” Math. Ann. 100, 32 (1928). [Translated and reprinted in IBM J. Res. & Dev. 11, 215 (1967).]MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    R. D. Richtmeyer and K. W. Morton, Difference Methods for Initial Value Problems, 2nd ed. (Interscience, New York, 1967).Google Scholar
  13. 13.
    G. G O’Brian, M. A. Hyman, and S. Kaplan, “A Study of the Numerical Solution of Partial Differential Equations, ” J. Math. & Phys. 29, 223 (1950).MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (John Wiley, New York, 1960).Google Scholar
  15. 15.
    J. C. Slattery, Momentum, Energy, and Mass Transfer in Continua, 2nd ed. (Robert E. Krieger, New York, 1981).Google Scholar
  16. 16.
    S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962s). [Reprinted by Dover, New York.]MATHGoogle Scholar
  17. 17.
    L. Woolf, Downhill All the Way: Autobiography of the Years1919–39 (Hogarth Press, London, 1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Richard Ghez

There are no affiliations available

Personalised recommendations