Advertisement

Design Examples

  • Johan Huijsing
Part of the The Kluwer International Series in Engineering and Computer Science book series (SECS, volume 605)

Abstract

We have made a classification of Operational Amplifiers in Chapter 6. Nine main topologies have been listed as in a periodic system.

Keywords

Operational Amplifier Output Stage Voltage Gain Input Stage Input Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [7.1]
    Huijsing, J.H., and Tol, F. “Monolithic operational, amplifier design with improved HF behavior” IEEE Journal of Solid-State Circuits, Vol. SC-11, April 1976, pp. 323–328.CrossRefGoogle Scholar
  2. [7.2]
    Steyaert, M., Sansen, W. “Opamp design towards Maximum Gain-Bandwidth” Analog Circuit Design, Johan H. Huijsing et al. editors, Kluwer Academic Publishers, Boston, USA, 1993, pp. 63–85.Google Scholar
  3. [7.3]
    Caprio, R. “Precision differential voltage-current converter” Electronics Letters, Vol. 9, March 22, 1973, pp. 147–148.CrossRefGoogle Scholar
  4. [7.4]
    Lee, B.W., and Shen, B.J. “A high-speed CMOS amplifier with dynamic frequency compensation” Journal of Semicustom ICs, Vol. 8, No. 3, Elsevier Science Publishers, 1991, pp. 42–46.Google Scholar
  5. [7.5]
    Callewaert, L.G.A., and Sansen, W. “Class AB CMOS Amplifiers with high efficiency” IEEE Journal of Solid-State Circuits, Vol. 25, No. 3, June 1990, pp. 684–691.CrossRefGoogle Scholar
  6. [7.6]
    Bult, K., and Geelen, G.J.G.M. “A fast settling CMOS op amp for SC-circuits with 90-dBDC gain” IEEE Journal of Solid-State Circuits, Vol. 25, No. 3, Dec. 1990, pp. 1379–1383.CrossRefGoogle Scholar
  7. [7.7]
    Hogervorst, R. et al “A programmable power-efficient 3-V CMOS rail-to-rail opamp with gain boosting for driving heavy resistive loads” Proceedings IEEE International Symposium on Circuits and Systems, Seattle, USA, April 30 — May 3, 1995, pp. 1544–1547.Google Scholar
  8. [7.8]
    Gray, P.R., and Meijer, R.G. “MOS Operational Amplifier design — A tutorial overview” IEEE Journal of Solid-State Circuits, Vol. 17, No. 6, Dec. 1982, pp. 969–982.CrossRefGoogle Scholar
  9. [7.9]
    Cotreau, G.M. “Operational Amplifiers and Voltage Regulators” ISSCC 85, Proceedings THAM 11.3, pp. 138–139.Google Scholar
  10. [7.10]
    Solomon, J.E. “The monolithic Op Amp: A tutorial study” IEEE Journal of Solid-State Circuits, Vol. 9, No. 6, Dec. 1974, pp. 314–332.CrossRefGoogle Scholar
  11. [7.11]
    Fairchild Data Sheet of fxk 741 opamp.Google Scholar
  12. [7.12]
    Widlar, R.J., and Yamatake, M. “A fast-settling op amp with low supply current” IEEE Journal of Solid State Circuits, Vol. 24, No. 3, June 1989, pp. 796–802.CrossRefGoogle Scholar
  13. [7.13]
    Langen, K.J. de, et al “A 1-GHz bipolar class-AB operational amplifier with multipath nested Miller compensation for 76-dB gain” IEEE Journal of Solid-State Circuits, Vol. 32, Viz. 4, April 1997, pp. 488–498.CrossRefGoogle Scholar
  14. [7.14]
    Widlar, R.J. “Monolithic op amp with simplified frequency compensation” IEEE, Vol. 15, July 1967, pp. 58–63.Google Scholar
  15. [7.15]
    Signetics/Philips Data Sheet NE 5534.Google Scholar
  16. [7.16]
    Eschauzier, R. G. H. et al “A 100-MHz 100-dB operational amplifier with multipath nested Miller compensation structure” IEEE Journal of Solid-State Circuits, Vol. 27, No. 12, Dec. 1992, pp. 1710–1717.CrossRefGoogle Scholar
  17. [7.17]
    Monticelli, D.M. “A quad CMOS single-supply op amp with rail-to-rail output swing” IEEE Journal of Solid-State Circuits, Vol. 21, No. 6, Dec. 1986, pp. 1026–1033.CrossRefGoogle Scholar
  18. [7.18]
    When-Chung, S. Wu, et al “Digital-compatible high-performance operational amplifier with rail-to-rail input and output ranges” IEEE Journal of Solid-State Circuits, Vol. 29, No. 1, Jan. 1994, pp. 63–66.CrossRefGoogle Scholar
  19. [7.19]
    Hogervorst, R. et al “A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries” IEEE Journal of Solid-State Circuits, Vol. 29, No. 12, Dec. 1994, pp. 1505–1513.CrossRefGoogle Scholar
  20. [7.20]
    Hogervorst, R., and Huijsing, J.H. “Design of low-Voltage low-power operational amplifier cells” Kluwer Academic Publishers, Boston, USA, 1996, pp. 35–63, pp. 147–203, 207 pages.Google Scholar
  21. [7.21]
    Langen, K.J. de, et al “Translinear circuits in low-voltage operational amplifiers” Analog Circuit Design, W. Sansen et al editors, Kluwer Academic Publishers, Boston, USA, 1996, pp. 357–386.Google Scholar
  22. [7.22]
    Langen, K.J. de, and Huijsing, J.H. “Compact low-voltage power efficient operational amplifier cells for VLSI” IEEE Journal of Solid-State Circuits, Vol. 33, No. 10, Oct. 1998, pp. 1482–1496.CrossRefGoogle Scholar
  23. [7.23]
    Seevinck, E., at al “A low-distortion output stage with improved stability for monolithic power amplifiers” IEEE Journal of Solid-State Circuits, Vol. 23, No. 3, June 1988, pp. 794–801.CrossRefGoogle Scholar
  24. [7.24]
    Langen, K.J. de, Huijsing, J.H. “Ultimate low-voltage compact three-stage operational amplifiers using nested Miller and mirrored nested Miller compensation” See [7.26]Google Scholar
  25. [7.25]
    Langen, K.J. de, Huijsing, J.H. “Compact low-voltage three stage BiCMOS operational amplifier cell” See [7.26]Google Scholar
  26. [7.26]
    Langen, K.J. de, Huijsing, J.H. “Advanced low-voltage and high-frequency operational amplifier design in CMOS, BICMOS, and bipolar technology” Kluwer Academic publishers, Boston, USA, 1999, 200 pages.Google Scholar
  27. [7.27]
    Huijsing, J.H., and Linebarger, D. “Low-voltage operational amplifier with rail-to-rail input and output ranges” IEEE Solid-State Circuits, Vol. 20, No. 6, Dec. 1985, pp. 1144–1150.CrossRefGoogle Scholar
  28. [7.28]
    Fonderie, M.J., and Huijsing, J.H. “Design of low-voltage bipolar operational amplifiers” Kluwer Academic Publishers, Boston, USA, 1993, 193 pages.CrossRefGoogle Scholar
  29. [7.29]
    Widlar, R.J. “Low-voltage techniques” IEEE Journal of Solid-State Circuits, Vol. 13, No. 6, Dec. 1978, pp. 838–846.CrossRefGoogle Scholar
  30. [7.30]
    Fonderie, M.J. et al “I-V operational amplifier with rail-to-rail input and output ranges” IEEE Journal of Solid-State Circuits, Vol. 24, No. 6, Dec. 1989, pp. 1551–1559.CrossRefGoogle Scholar
  31. [7.31]
    Fonderie, M.J., and Huijsing, J.H. “Operational amplifier with 1-V rail-to-rail multipath driven output stage” IEEE Journal of Solid-State Circuits, Vol. 26, No. 12, Dec. 1991, pp. 1817–1824.CrossRefGoogle Scholar
  32. [7.32]
    Eschauzier, R.G.H., et al “A programmable 1.5 V Class-AB operational amplifier with hybrid nested Miller compensation for 120 dB gain and 6 MHz UGF” IEEE Journal of Solid-State Circuits, Vol. 29, No. 12, Dec. 1994, pp. 1497–1504.CrossRefGoogle Scholar
  33. [7.33]
    Eschauzier, R.G.H. and Huijsing, J.H. “Frequency compensation techniques for low-power operational amplifiers” Kluwer Academic Publishers, Boston, USA, 1995, 245 pages.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Johan Huijsing
    • 1
  1. 1.Delft University of TechnologyThe Netherlands

Personalised recommendations