Scanning Probe Arrays for Lithography

  • Hyongsok T. Soh
  • Kathryn Wilder Guarini
  • Calvin F. Quate
Part of the Microsystems book series (MICT, volume 7)


In Chapter 6 we demonstrated dramatic improvements in the writing speed of a single tip, yet patterning throughput is still too low to make SPL a viable large-scale patterning technology. For example, a writing speed of 10 mm/s and a pixel size of 100 nm correspond to a pixel rate of 100 kHz (kilopixels per second). An exposure field measuring 1 cm × 1 cm contains 1010 pixels. If we raster scanned the tip over every pixel in the exposure field, it would take 105 seconds or about one day to cover the region. For comparison, today’s deep ultraviolet (DUV) steppers pattern about 40 200-mm-diameter wafers per hour. Each wafer contains more than 200 1 cm × 1 cm exposure fields.


Exposure Field Wheatstone Bridge Dimensional Array Input Capacitance Common Mode Rejection Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, “Centimeter-scale atomic force microscope imaging and lithography,” Appl. Phys. Lett. 73, 1741–1744 (1998).CrossRefGoogle Scholar
  2. [2]
    A. J. Peyton and V. Walsh, Analog Electronics With Op Amps ( New York: Cambridge University Press, 1993 ).Google Scholar
  3. [3]
    S. C. Minne, “Increasing the throughput of atomic force microscopy,” Ph.D. Thesis, Stanford University, 1996.Google Scholar
  4. [4]
    S. C. Minne S. R. Manalis, and C. F. Quate, “Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators,” Appl. Phys. Lett. 67, 3918 (1995).CrossRefGoogle Scholar
  5. [5]
    S. C. Minne, S. R. Manalis, A. Atalar and C. F. Quate, “Independent parallel lithography using the atomic force microscope,” J. Vac. Sci. Technol. B 14, 2458 (1996).CrossRefGoogle Scholar
  6. [6]
    M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Haeberle, H. Rohrer, H. Rothuizen, and P. Vettiger, “Microfabrication and parallel operation of 5x5 2D AFM cantilever arrays for data storage and imaging,” Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. (Cat. No.98CH36176), 8 (1998).Google Scholar
  7. [7]
    International Technology Roadmap for Semiconductors (San Jose: Semiconductor Industry Association, 1997). Data reflect 1998 update to the roadmap.Google Scholar
  8. [8]
    K. Bean, “Anisotropic etching of silicon”, IEEE Trans.Electron Devices ED-25, 1187 (1978).Google Scholar
  9. [9]
    O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, and S. Sugiyama, “Anisotripic etching of silicon in TMAH solutions,” Sensors and Actuators A 34, 51 (1992).CrossRefGoogle Scholar
  10. [10]
    E. M. Chow, H. T. Soh, A. Partridge, J. A. Harley, T. W. Kenny and C. F. Quate, “Fabrication of high density cantilever arrays and through-wafer connections,” Proc. Solid State Sensors and Actuator Workshop, Hilton Head Island, South Carolina (6–11 June), 220, (1998).Google Scholar
  11. [11]
    C. Christensen, P. Kersten, S. Henke and S. Bouwstra, “Wafer through-hole interconnections with high vertical wiring densities,” IEEE Transactions on Components, Packaging, and Manufacturing Technology 19, 516 (1996).CrossRefGoogle Scholar
  12. [12]
    P. Kersten, S. Bouwstra and J. W. Petersen, “Photolithography on micromachined 3D surfaces using electrodeposited photoresists,” Sensors and Actuators A (Physical). A51, 51 (1995).CrossRefGoogle Scholar
  13. [13]
    M. Tortonese, H. Yamada, R. C. Barrett, and C. F. Quate, “Atomic force microscopy using a piezoresistive cantilever,” Proceedings of the 6th International Conference on Solid-State Sensors and Actuators (Transducers ‘81) 91, 448 (1991).CrossRefGoogle Scholar
  14. [14]
    M. Tortonese, “Force sensors for scanning probe microscopy,” Ph.D. Thesis, Ginzton Laboratory Number 5098, Stanford University, June 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hyongsok T. Soh
    • 1
  • Kathryn Wilder Guarini
    • 1
  • Calvin F. Quate
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations