Critical Dimension Patterning Using SPL

  • Hyongsok T. Soh
  • Kathryn Wilder Guarini
  • Calvin F. Quate
Part of the Microsystems book series (MICT, volume 7)


Transistor gate patterning is the primary application of a high-resolution lithographic system in the semiconductor industry. The gate itself is typically a long, narrow line of polysilicon whose width (known as the transistor gate “length”) determines the device switching speed. The uniformity of the gate is critical for device electrical performance and yield. Gate patterning is performed after significant device processing. Therefore the feature must be accurately aligned to the previously patterned regions. It must also be written over the sample topography created by the prior fabrication steps.


Rapid Thermal Anneal Electron Beam Lithography Gate Length Shallow Trench Isolation Effective Channel Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. F. Lee, R. H. Yan, D. Y. Jeon, G. M. Chin, Y. O Kim, D. M. Tennant, B. Razavi, H. D. Lin, Y. G. Wey, E. H. Westerwick, M. D. Morris, R. W. Johnson, T. M. Liu, M. Tarsia, M. Cerullo, R. G. Swartz, and A. Ourmazd, “Room temperature 0.1 µm CMOS technology with 11.8 ps gate delay,” Proc. IEDM, 131–134 (1993).Google Scholar
  2. [2]
    Y. Taur, S. Wind, Y. J. Mii, Y. Lii, D. Moy, K. A. Jenkins, C. L. Chen, P. J. Coane, D. Klaus, J. Bucchignano, M. Rosenfield, M. G. R. Thomson, and M. Polcari, “High performance 0.1 µm CMOS devices with 1.5 V power supply,” Proc. IEDM, 127–130 (1993).Google Scholar
  3. [3]
    T. Hori, “A 0.1 µm CMOS technology with tilt-implanted punchthrough stopper,” Proc. IEDM, 75–78 (1994).Google Scholar
  4. [4]
    B. Davari, “CMOS technology scaling, 0.1 µm and beyond,” Proc. IEDM, 555558 (1996).Google Scholar
  5. [5]
    S. C. Minne, H. T. Soh, P. Flueckiger, and C. F. Quate, “Fabrication of 0.1 µm metal oxide semiconductor field-effect transistors with the atomic force microscope,” Appl. Phys. Lett. 66, 703–705 (1995).CrossRefGoogle Scholar
  6. [6]
    E. Kooi, The Invention of LOCOS (New York: The Institute of Electrical and Electronics Engineers, Inc., 1991 ).Google Scholar
  7. [7]
    S. Wolf, Silicon Processing for the VLSI Era (Sunset Beach, California: Lattice Press, 1990 ).Google Scholar
  8. [8]
    International Technology Roadmap for Semiconductors (San Jose: Semiconductor Industry Association, 1997). Data also reflects 1998 update to the roadmap.Google Scholar
  9. [9]
    W. H. Arnold, B. Singh, and K. Phan, “Line width metrology requirement for sub-micron lithography,” Solid State Technol. 32, 139–145 (1989).Google Scholar
  10. [10]
    L. Bauch, U. Jagdhold, and M. Bottcher, “Electron beam lithography over topography,” Microelectron. Eng. 30, 53–56 (1996).CrossRefGoogle Scholar
  11. [11]
    T. Waas, E. Eisenmann, O. Vollinger, and H. Hartmann, “Proximity correction for high CD accuracy and process tolerance,” Microelectron. Eng. 27, 179–182 (1995).CrossRefGoogle Scholar
  12. [12]
    J. M. Pimbley and J. D. Meindl, “MOSFET scaling limits determined by subthreshold conduction,” Trans. Elec. Dev. 36, 1711–1721 (1989).CrossRefGoogle Scholar
  13. [13]
    R. R. Troutman, “VLSI limitations from drain-induced barrier lowering,” IEEE J. of Solid-State Circuits SC-14, 383–391 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hyongsok T. Soh
    • 1
  • Kathryn Wilder Guarini
    • 1
  • Calvin F. Quate
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations