Resist Exposure Using Field-Emitted Electrons

  • Hyongsok T. Soh
  • Kathryn Wilder Guarini
  • Calvin F. Quate
Part of the Microsystems book series (MICT, volume 7)

Abstract

Early scanning probe lithography (SPL) studies were limited to demonstrations of the technique’s fine resolution. A few groups fabricated devices using SPL [1][2][3], but such work was directed toward creating a single working device suitable for research or exploration. Methods used by these groups suffer from speed constraints and poor repeatability, thus it is unlikely they can be easily extended to large-scale fabrication applications. We sought to develop a method of SPL suited to semiconductor lithography, where accuracy, reliability, and throughput are essential.

Keywords

Titanium Anisotropy Chrome Molybdenum Ketone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. S. Snow and P. M. Campbell, “Fabrication of nanometer-scale side-gated silicon field effect transistors with an atomic force microscope,” Appl. Phys. Lett. 66, 1388–1390 (1995).CrossRefGoogle Scholar
  2. [2]
    S. C. Minne, H. T. Soh, P. Flueckiger, and C. F. Quate, “Fabrication of 0.1.tm metal oxide semiconductor field-effect transistors with the atomic force microscope,” Appl. Phys. Lett. 66, 703–705 (1995).CrossRefGoogle Scholar
  3. [3]
    K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian, and J. S. Harris, “Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanoxidation process for the TiOx/Ti system,” Appl. Phys. Lett. 68, 34–36 (1996).CrossRefGoogle Scholar
  4. [4]
    H. J. Kreuzer, in Atomic and Nanometer-Scale Modification of Materials: Fundamentals and Applications, edited by P. Avouris, NATO ASI Series, Ser. E, Appl. Sci. 239 ( Boston: Kluwer Publishing, 1993 ), 75–86.Google Scholar
  5. [5]
    R. Gomer, Field Emission and Field Ionization (New York: American Institute of Physics, 1993 ).Google Scholar
  6. [6]
    R. H. Fowler and N. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London Ser. A 119, 173–181 (1928).MATHCrossRefGoogle Scholar
  7. [7]
    I. Brodie and C. A. Spindt, “Vacuum Microelectronics,” Advances in Electronics and Electron Physics 83, 1–106 (1992).CrossRefGoogle Scholar
  8. [8]
    B. R. Chalamala, Y. Wei, and B. E. Gnade, “The vital vacuum,” IEEE Spectrum 35, 50 (1998).CrossRefGoogle Scholar
  9. [9]
    K. A. Valiev, The Physics of Submicron Lithography ( New York: Plenum Press, 1992 ).CrossRefGoogle Scholar
  10. [10]
    W.-C. Wang, C.-H. Tsai, Y.-S. Fran, C.-Y. Sheu, K.-L. Tsai, and L. K. Hseu, “A high luminance FED with very low power consumption,” Proc. SPIE 3421, 69–76 (1998).CrossRefGoogle Scholar
  11. [11]
    I. Y. Yang, H. Hu, L. T. Su, V. V. Wong, M. Burkhardt, E. E. Moon, J. M. Carter, D. A. Antoniadis, H. J. Smith, K. W. Rhee, and W. Chu, “High performance self-aligned sub-100 nm metal-oxide semiconductor field-effect transistors using X-Ray lithography,” J. Vac. Sci. Technol. B 12, 4051–4 (1994).CrossRefGoogle Scholar
  12. [12]
    A. Claßen, S. Kuhn, J. Straka, and A. Forchel, “High voltage electron beam lithography of the resolution limits of SAL601 negative resist,” Microelectron. Eng. 17, 21–24 (1992).CrossRefGoogle Scholar
  13. [3]
    F. K. Perkins, E. A. Dobisz, and C. R. K. Marrian, “Determination of acid diffusion rate in a chemically amplified resist using scanning tunnelling microscope lithography,” J. Vac. Sci. Technol. B 11, 2597–2602 (1993).CrossRefGoogle Scholar
  14. [14]
    A. Broers, in Nanostructure Physics and Fabrication, edited by M. A. Reed and W. P. Kirk ( Academic Press, San Diego, CA, 1989 ), p. 421.Google Scholar
  15. [15]
    G. H. Bernstein, D. A. Hill, and W.-P. Liu, “New high-contrast developers for poly(methyl methacrylate) resist,” J. Appl. Phys. 71, 4066–4075 (1992).CrossRefGoogle Scholar
  16. [16]
    H. Liu, “Fabrication and properties of silicon nano-structures,” Ph.D. Thesis, Stanford University (1995).Google Scholar
  17. [17]
    D. M. Tennant, L. D. Jackel, R. E. Howard, E. L. Hu, P. Grabbe, R. J. Capik, and B. S. Schneider, “Twenty-five nm features patterned with trilevel e-beam resist,” J. Vac. Sci. Technol. 19, 1304–1307 (1981).CrossRefGoogle Scholar
  18. [18]
    Y. Martin and H. K. Wickramasinghe, “Method for imaging sidewalls by atomic force microscopy,” Appl. Phys. Lett. 64, 2498–2500 (1994).CrossRefGoogle Scholar
  19. [19]
    K. Wilder, B. Singh, and W. H. Arnold, “Sub-0.35-µm critical dimension metrology using atomic force microscopy,” Proc. SPIE 2725, 540–554 (1996).CrossRefGoogle Scholar
  20. [20]
    M. A. McCord and R. F. W. Pease, “Lift-off metallization using poly(methyl methacrylate) exposed with a scanning tunneling microscope,” J. Vac. Sci. Technol. B 6, 293–296 (1988).CrossRefGoogle Scholar
  21. [21]
    C. R. K. Marrian, F. K. Perkins, S. L. Brandow, T. S. Koloski, E. A. Dobisz, and J. M. Calvert, “Low voltage electron beam lithography in self-assembled ultra-thin films with the scanning tunneling microscope,” Appl. Phys. Lett. 64, 390–392 (1994).CrossRefGoogle Scholar
  22. [22]
    C. R. K. Marrian and E. A. Dobisz, “Scanning tunneling microscope lithography: A viable lithographic technology?” Proc. SPIE 1671, 166–176 (1992).CrossRefGoogle Scholar
  23. [23]
    C. R. K. Marrian, E. A. Dobisz, and R. J. Colton, “Lithographic studies of an e- beam resist in a vacuum scanning tunneling microscope,” J. Vac. Sci. Technol. A 8, 3563–3569 (1990).CrossRefGoogle Scholar
  24. [24]
    A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham, and J. Alexander, “Nanometer-scale lithography using the atomic force microscope,” Appl. Phys. Lett. 61, 2293–2295 (1992).CrossRefGoogle Scholar
  25. [25]
    M. Tortonese, R. C. Barrett, and C. F. Quate, “Atomic resolution with an atomic force microscope using piezoresistive detection,” Appl. Phys. Lett. 62, 834–836 (1993).CrossRefGoogle Scholar
  26. [26]
    S. R. Manalis, S. C. Minne, A. Atalar, and C. F. Quate, “Interdigital cantilevers for atomic force microscopy,” Appl. Phys. Lett. 69, 3944–3946 (1996).CrossRefGoogle Scholar
  27. [27]
    L. F. Thompson, L. E. Stillwagon, and E. M. Doerries, “Negative electron resist for direct fabrication of devices,” J. Vac. Sci. Technol. 15, 938–943 (1978).CrossRefGoogle Scholar
  28. [28]
    L. E. Ocola, D. S. Fryer, G. Reynolds, A. Krasnoperova, and F. Cerrina, “Scanning force microscopy measurement of latent image topography in chemically amplified resists,” Appl. Phys. Lett. 68, 717–719 (1996).CrossRefGoogle Scholar
  29. [29]
    F. K. Perkins, E. A. Dobisz, and C. R. K. Marrian, “Determination of acid diffusion rate in a chemically amplified resist with scanning tunneling microscope lithography,” J. Vac. Sci. Technol. B 11, 2597–2602 (1993).CrossRefGoogle Scholar
  30. [30]
    T. Shiokawa, Y. Aoyagi, M. Shigeno, and S. Namba, “In situ observation and correction of resist patterns in atomic force microscope lithography,” Appl. Phys. Lett. 72, 2481–2483 (1998).Google Scholar
  31. [31]
    E. A. Dobisz, S. L Brandow, R. Bass, and L. M. Shirley, “Nanolithography in polymethylmethacrylate: An atomic force microscope study,” J. Vac. Sci. Technol. B 16, 3695–3700 (1998).CrossRefGoogle Scholar
  32. [32]
    B. D. Terris, S. A. Rishton, H. J. Mamin, R. P. Ried, and D. Rugar. Rishton, H. J. Mamin, R. P. Ried, and D. Rugar, “Atomic force microscope-based data storage: Track servo and wear study,” Appl. Phys. A 66, S809 - S813 (1998).Google Scholar
  33. [33]
    H. Sugimura and N. Nakagiri, “AFM lithography in constant current mode,”Nanotechnology 8, A15 - A18 (1997).Google Scholar
  34. [34]
    M. Ishibashi, S. Heike, H. Kajiyama, Y. Wada, and T. Hashizume, “Characteristics of scanning-probe lithography with a current-controlled exposure system,” Appl. Phys. Lett. 72, 1581–1583 (1998).CrossRefGoogle Scholar
  35. [35]
    M. Ishibashi, S. Heike, H. Kajiyama, Y. Wada, and T. Hashizume, “Characteristics of nanoscale lithography using AFM with a current-controlled exposure system,” Jpn. J. Appl. Phys., Part 1, 37, 1565–1569 (1998).Google Scholar
  36. [36]
    A. O. Golubok, I. D. Sapozhmikov, A. M. Solov’ev, and S. Y. Tipisev, “Scanning probe microscopy combining STM and AFM modes,” Russian Microelectronics 26, 291–296 (1997).Google Scholar
  37. [37]
    T. G. Ruskell, R. K. Workman, D. Chen, D. Sarid, S. Dahl, and S. Gilbert, “High resolution Fowler-Nordheim field emission maps of thin silicon oxide layers,” Appl. Phys. Lett. 68, 93–95 (1996).CrossRefGoogle Scholar
  38. [38]
    S. C. Minne, “Increasing the throughput of atomic force microscopy,” Ph.D. Thesis, Stanford University, 1996.Google Scholar
  39. [39]
    S. C. Minne, G. Yaralioglu, S. R. Manalis, J. D. Adams, J. Zesch, A. Atalar, and C. F. Quate, “Automated parallel high-speed atomic force microscopy,” Appl. Phys. Lett. 72, 2340–2342 (1998).CrossRefGoogle Scholar
  40. [40]
    E. A. Dobisz, H. W. P. Koops, and F. K. Perkins, “Simulation of scanning tunneling microscope interaction with resists,” Appl. Phys. Lett. 68, 3653–3655 (1996).CrossRefGoogle Scholar
  41. [41]
    E. A. Dobisz, H. W. P. Koops, F. K. Perkins, C. R. K. Marrian, and S. L. Brandow, “Three dimensional electron optical modeling of scanning tunneling microscope lithography in resists,” J. Vac. Sci. Technol. B 14, 4148–4152 (1996).CrossRefGoogle Scholar
  42. [42]
    T. M. Mayer, D. P. Adams, and B. M. Marder, “Field emission characteristics of the scanning tunneling microscope for nanolithography,” J. Vac. Sci. Technol. B 14, 2438–2444 (1996).CrossRefGoogle Scholar
  43. [43]
    G. Mesa, J. J. Saenz, and R. Garcia, “Current characteristics in near field emission scanning tunneling microscopes,” J. Vac. Sci. Technol. B 14, 2403–2405 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hyongsok T. Soh
    • 1
  • Kathryn Wilder Guarini
    • 1
  • Calvin F. Quate
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations