SPL by Electric-Field- Enhanced Oxidation

  • Hyongsok T. Soh
  • Kathryn Wilder Guarini
  • Calvin F. Quate
Part of the Microsystems book series (MICT, volume 7)


SPL by electric-field-enhanced oxidation was introduced by Dagata [5] in his pioneering study of patterning hydrogen passivated <111> single crystal silicon with the scanning tunneling microscope (STM). The lithography begins by removing the native oxide and hydrogen passivating the silicon surface in hydroflouric acid (HF). Then the tip of a scanning probe with a voltage bias (typically a few volts) is brought to the vicinity of the surface creating an intense electric field. The magnitude of this electric field can be in excess of 1 V/nm. A schematic diagram of the experimental set up is shown in Fig. 2.1.


Scanning Tunneling Microscope Amorphous Silicon Atomic Force Microscope Probe Subthreshold Slope Mask Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.S. Kilby, “Invention of the integrated circuit,” IEEE Transactions on Electron Device, 648 (1976).Google Scholar
  2. [2]
    R. Mohondro, “Advanced lithography: A review,” Future Fab Intemational 1, 121 (1996).Google Scholar
  3. [3]
    The information is available from The National Technology Roadmap for Semiconductors 1997 Edition, SEMATECH, Austin TX, 78758 (1997).Google Scholar
  4. [4]
    R. Stulen, “Technical challenges in extreme ultraviolet lithography,” Proceedings of the Sixth Intemational Symposium on Ultralarge Scale Integration Science and Technology, 515 (1997).Google Scholar
  5. [5]
    J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air,” Appl. Phys. Lett. 56, 2001 (1990).Google Scholar
  6. [6]
    H.J. Kreuzer, “Physics and chemistry in high electric fields,” Atomic and Nanometer-Scale Modification of Materials: fundamentals and Applications, Ed: Phaedon Avouris, NATO ASI Series, Series E, Applied Science 239, 75–86 ( Boston: Kluwer Academic Pub., 1993 )Google Scholar
  7. [7]
    R. S. Becker, G. S. Higashi, Y. J. Chabal, and A. J. Becker, “Atomic scale conversion of clean Si(111):H-lxl to Si(111)-2x1 by electron-stimulated desorption,” Phys. Rev. Lett. 65, 1917 (1990).CrossRefGoogle Scholar
  8. [8]
    J. W. Lyding, “Nanoscale patterning and oxidation of H-passivated Si(100)-2x1 surfaces with an ultrahigh vacuum scanning tunneling microscope,” Appl. Phys. Lett. 64, 2010 (1994).Google Scholar
  9. [9]
    E. S. Snow, and P. M. Campbell, “Fabrication of nanometer-scale side-gated silicon field effect transistors with an atomic force microscope,” Appl. Phys. Lett. 66, 1388 (1995).CrossRefGoogle Scholar
  10. [10]
    H. Sugimura, T. Uchida, N. Kitamura, and H. Masuhara, “Tip-induced anodization of titanium surfaces by scanning tunneling microscopy: A humidity effect on nanolithography,” Appl. Phys. Lett. 63, 1288–1290 (1993).CrossRefGoogle Scholar
  11. [11]
    T. Thundat, L.A. Nagahara, P. I. Oden, S. M. Lindsay, M. A. George, and W. S. Glaunsinger, “Modification of tantalum surfaces by scanning tunneling microscopy in an electrochemical cell,” J. Vac. Sci. Technol. A 8, 3537 (1990).CrossRefGoogle Scholar
  12. [12]
    H. J. Song, M. J. Rack, K. Abugharbieh, S. Y. Lee, V. Khan, D. K. Ferry, and D. R. Allee, “25 nm chromium oxide lines by scanning tunneling lithography in air,” J. Vac. Sci. Technol. B 12, 3720 (1994).CrossRefGoogle Scholar
  13. [13]
    E. S. Snow, D. Park, and P.M. Campbell, “Single-atom point contact devices fabricated with an atomic force microscope,” Appl. Phys. Lett. 69, 269 (1996).CrossRefGoogle Scholar
  14. [14]
    N. Kramer, H. Birk, J. Jorritsma, and C. Schonenberger, “Fabrication of metallic nanowires with a scanning tunneling microscope,” Appl. Phys. Lett. 66, 1325 (1995).CrossRefGoogle Scholar
  15. [15]
    Y. Tsividis, Operation and Modeling of the MOS transistor ( New York: McGraw-Hill, Inc., 1987 ), p. 168.Google Scholar
  16. [16]
    J. G. Chem, P. Chang, R. F. Motta, and N. Godinho, “A new method to determine MOSFET channel length,” IEEE Electron Device Lett. EDL-1, 170 (1980).Google Scholar
  17. [17]
    E. S. Snow and P. M. Campbell, “Fabrication of Si nanostructures with an atomic force microscope,” Appl.Phys. Lett. 64, 1932 (1994).Google Scholar
  18. [18]
    S. C. Minne, “Increasing the throughput of atomic force microscopy,” Ph.D. Thesis, Stanford University (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hyongsok T. Soh
    • 1
  • Kathryn Wilder Guarini
    • 1
  • Calvin F. Quate
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations