Advertisement

Introduction to Scanning Probe Lithography

  • Hyongsok T. Soh
  • Kathryn Wilder Guarini
  • Calvin F. Quate
Part of the Microsystems book series (MICT, volume 7)

Abstract

Semiconductor lithography is the patterning process used to define the structures that make up integrated circuits (ICs). The semiconductor industry has historically scaled down the size of printed features on ICs because scaling both improves transistor performance and reduces the area that devices occupy. Today the patterning technology employed in manufacturing is photolithography, a process that uses ultraviolet light to define submicron-sized features in photosensitive polymers. Since photolithography is rapidly approaching fundamental resolution limitations, a new high-resolution patterning technique may be required to continue the industry’s trend toward higher performance electron devices, increased packing densities, and higher density memories.

Keywords

Atomic Force Microscope Scanning Tunneling Microscope Electron Beam Lithography Single Electron Transistor Cantilever Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Binnig and H. Rohrer, “Scanning tunneling microscopy,” Helvetica Physica Acta 55, 726–735 (1982).Google Scholar
  2. [2]
    G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).CrossRefGoogle Scholar
  3. [3]
    P. C. D. Hobbs, Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope: implementations,” Proc. SPIE 897, 26–30 (1988).CrossRefGoogle Scholar
  4. [4]
    C. B. Prater and Y. E. Strausser, “Tapping mode atomic force microscopy: Applications to semiconductors,” Proc. 5th International Conference on Defect Recognition and Image Processing in Semiconductors and Devices, 69–72 (1993).Google Scholar
  5. [5]
    D. Pramanik, M. Weling, and L. Zhou, “Using AFM to develop sub-µm multilevel metallization processes,” Solid State Technology 37, 79–86 (1994).Google Scholar
  6. [6]
    B. Burggraaf, “Pursuing advanced metrology solutions,” Semiconductor Int. 17, 62–64 (1994).Google Scholar
  7. [7]
    J. Li, S. Xiao, A. Zhao, and D. Li, “Inspecting of the microprofile and defects of optical surfaces using the atomic force microscope,” Proc. SPIE 3422, 270–273 (1998).CrossRefGoogle Scholar
  8. [8]
    M. R. Rodgers, M. A. Wendman, and F. D. Yashar, “Application of the atomic force microscope to integrated circuit failure analysis,” Microelectron. Reliab. 33, 1947–1956 (1993).CrossRefGoogle Scholar
  9. [9]
    G. Neubauer and M. L. A. Dass, “Imaging VLSI cross sections by atomic force microscopy,” Proc. IEEE Reliability Physics, 299–303 (1992).Google Scholar
  10. [10]
    K. Wilder, C. F. Quate, B. Singh, and W. H. Arnold, “Cross sectional imaging and metrology using the atomic force microscope,” J. Vac. Sci. Technol. B 14, 40044008 (1996).Google Scholar
  11. [11]
    Y. Martin and H. K. Wickramasinghe, “Method for imaging sidewalls by atomic force microscopy,” Appl. Phys. Lett. 64, 2498–2500 (1994).CrossRefGoogle Scholar
  12. [12]
    K. Wilder, B. Singh, and W. H. Arnold, “Novel in-line applications of atomic force microscopy,” Sol. State Technol. 39, 5, 109–116 (1996).Google Scholar
  13. [13]
    H. K. Wickramasinghe, “Scanned-probe microscopes,” Scientific American 261, 74–81 (1989).CrossRefGoogle Scholar
  14. [14]
    M. R. Rodgers, M. A. Wendman, and F. D. Yashar, “Application of the atomic force microscope to integrated circuit failure analysis,” Microelectron. Reliab. 33, 1947–1956 (1993).CrossRefGoogle Scholar
  15. [15]
    A. Majumdar, J. P. Carrejo, and J. Lai, “Thermal imaging using the atomic force microscope,” Appl. Phys. Lett. 62, 2501–2503 (1993).CrossRefGoogle Scholar
  16. [16]
    N. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy,” Appl. Phys. Lett. 68, 2921–2923 (1991).CrossRefGoogle Scholar
  17. [17]
    O. Vatel and M. Tanimoto, “Kelvin probe force microscopy for potential distribution measurements of semiconductor devices,” J. Appl. Phys. 77, 23582368 (1995).Google Scholar
  18. [18]
    G. Neubauer, A. Erickson, C. C. Williams, J. J. Kopanski, M. Rodgers, and D. Adderton, “Two-dimensional scanning capacitance microscopy measurements of cross-sectioned very large scale integrated test structures,” J. Vac. Sci. Technol. B 14, 426–432 (1996).Google Scholar
  19. [19]
    Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope-force mapping and profiling on a sub 100-A scale,” J. Appl. Phys. 10, 4723 (1987).CrossRefGoogle Scholar
  20. [20]
    O. Marti, B. Drake, and P. K. Hansma, “Atomic force microscopy of liquid-covered surfaces: Atomic resolution images,” Appl. Phys. Lett. 7, 484 (1987).CrossRefGoogle Scholar
  21. [21]
    T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for the atomic force microscope,” J. Vac. Sci Technol. A. 8, 3386 (1990).CrossRefGoogle Scholar
  22. [22]
    M. M. Farooqui, A. G. R. Evans, M. Stedman, and J. Haycocks, “Micromachined silicon sensors for atomic force microscopy,” Nanotechnology 3, 91 (1992)CrossRefGoogle Scholar
  23. [23]
    S. Akamine, R. C. Barrett, and C F. Quate, “Improved atomic force microscope images using microcantilevers with sharp tips,” Appl. Phys. Lett. 57, 316 (1990).CrossRefGoogle Scholar
  24. [24]
    R. Erlandsson, G. M. McClelland, C. M. Mate, and S. Chiang, “Atomic force microscopy using optical interferometry,” J. Vac. Sci Technol. A6, 266 (1988).CrossRefGoogle Scholar
  25. [25]
    T. Goddenhenrich, H. Lemke, U. Hartmann, and C. Heiden, “Force microscope with capacitive displacement detection,” J. Vac. Sci. Technol. A8, 383 (1990).CrossRefGoogle Scholar
  26. [26]
    G. Meyer and N. M. Amer, “Novel optical approach to atomic force microscopy,” Appl. Phys. Lett. 53, 1045 (1988).CrossRefGoogle Scholar
  27. [27]
    S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic-resolution atomic-force microscope implemented using an optical lever,” J. Appl. Phys. 65, 164–167, (1989).CrossRefGoogle Scholar
  28. [28]
    D. Sarid, P. Pax, L. Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, and D. Bocek, “Improved atomic force microscope using a laser diode interferometer,” Rev. Sci. Instrum. 63, 3905 (1992).CrossRefGoogle Scholar
  29. [29]
    J. Brugger, R. A. Buser, and N. F. de Rooij, “Micromachined atomic force microprobe with integrated capacitive read-out,” J. Micromech. Microeng. 2, 218 (1992).CrossRefGoogle Scholar
  30. [30]
    M. Tortonese, H. Yamada, R. C. Barrett, and C.F. Quate, “Atomic force microscopy using a piezoresistive cantilever,” Proceedings of Transducers ‘81, IEEEE publication 91CH2817–5, 448 (1991).Google Scholar
  31. [31]
    S. Akamine, T. R. Albrecht, M. J. Zdeblick, and C. F. Quate, “Microfabricated scanning tunneling microscope,” IEEE Electron Device Letters 10, 490 (1989).CrossRefGoogle Scholar
  32. [32]
    T. Fujii, S. Watanabe, M. Suzuki, and T. Fujiu, “Application of lead zirconate titanate thin film displacement sensors for the atomic force microscope,” J. Vac, Sci. Technol. B 13, 1119 (1995).CrossRefGoogle Scholar
  33. [33]
    N.C. MacDonald, “Single crystal silicon nanomechanisms for scanned-probe device arrays,” Technical Digest. IEEE Solid-State Sensor and Actuator Workshop (Cat. No.92TH0403-X), 1, (1992).Google Scholar
  34. [34]
    S. C. Minne S. R. Manalis, and C. F. Quate, “Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators,” Appl. Phys. Lett. 67, 3918 (1995).CrossRefGoogle Scholar
  35. [35]
    S. C. Minne, G. Yaralioglu, S. R. Manalis, J. D. Adams, J. Zesch, A. Atalar, and C. F. Quate, “Automated parallel high-speed atomic force microscopy,” Appl. Phys. Lett. 72, 2340–2342 (1998).CrossRefGoogle Scholar
  36. [36]
    M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Haberle, H. Rohrer, H. Rothuizen, P. Vettiger, G. Yaralioglu, and C. Quate, “5x5 2D AFM cantilever arrays: A first step towards a Terabit storage device,” Sens. Actuators A73, 89 (1999).CrossRefGoogle Scholar
  37. [37]
    C. Baur, A. Bugacov, B. E. Koel, A. Madhukar, N. Montoya, T. R. Ramachandran, A. A. G. Requicha, R. Resch, and P. Will, “Nanoparticle manipulation by mechanical pushing: Underlying phenomena and real-time monitoring,” Nanotechnology 9, 360–364 (1998).CrossRefGoogle Scholar
  38. [38]
    P. H. Beton, A. W. Dunn, and P. Moriarty, “Manipulation of C60 molecules on a Si surface,” Appl. Phys. Lett. 67, 1075–1077 (1995).CrossRefGoogle Scholar
  39. [39]
    T. A. Jung, R. R. Schlittler, J. K. Gimzewski, H. Tang, and C. Joachim, “Controlled room-temperature positioning of individual molecules: Molecular flexure and motion,” Science 271, 181–184 (1996).CrossRefGoogle Scholar
  40. [40]
    J. A. Stroscio and D. M. Eigler, “Atomic and molecular manipulation with the scanning tunneling microscope,” Science 254, 1319–1326 (1991).CrossRefGoogle Scholar
  41. [41]
    M. T. Cuberes, R. R. Schlitter, and J. K. Gimzewski, “Room-temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device,” Appl. Phys. Lett. 69, 3016–3018 (1996).CrossRefGoogle Scholar
  42. [42]
    M. F. Crommie, C. P. Lutz, and D. M. Eigler, “Confinement of electrons to quantum corrals on a metal surface,” Science 262, 218–220 (1993).CrossRefGoogle Scholar
  43. [43]
    I.-W. Lyo and P. Avouris, “Field-induced nanometer-to atomic-scale manipulation of silicon surface with STM,” Science 253, 173–176 (1991).CrossRefGoogle Scholar
  44. [44]
    M. A. McCord and R. F. W. Pease, “A scanning tunneling microscope for surface modification,” J. Phys. Colloq. 47, 485–491 (1986).CrossRefGoogle Scholar
  45. [45]
    V. Bouchiat and D. Esteve, “Lift-off lithography using an atomic force microscope,” Appl. Phys. Lett. 69, 3098–3100 (1996).CrossRefGoogle Scholar
  46. [46]
    L. L. Sohn and R. L. Willett, “Fabrication of nanostructures using atomic-forcemicroscope-based lithography,” Appl. Phys. Lett. 67, 1552–1554 (1995).CrossRefGoogle Scholar
  47. [47]
    S. Hu, S. Altmeyer, A. Hamidi, B. Spangenberg, and H. Kurz, “A novel approach to atomic force lithography,” J. Vac. Sci. Technol. B 16, 1983–1986 (1998).CrossRefGoogle Scholar
  48. [48]
    S. Hu, A. Hamidi, S. Altmeyer, T. Koster, B. Spangenberg, and H. Kurz, “Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography,” J. Vac. Sci. Technol. B 16, 2822–2824 (1998).CrossRefGoogle Scholar
  49. [49]
    H. J. Mamin, B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, and D. Rugar, “High-density data storage using proximal probe techniques,” IBM J. of Res. and Dev. 39, 681–699 (1995).CrossRefGoogle Scholar
  50. [50]
    H. J. Mamin and D. Rugar, “Thermomechanical writing with an atomic force microscope tip,” Appl. Phys. Lett. 61, 1003–1005 (1992).CrossRefGoogle Scholar
  51. [51]
    J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air,” Appl. Phys. Lett. 56, 2001–2003 (1990).CrossRefGoogle Scholar
  52. [52]
    N. Kramer, J. Jorritsma, H. Birk, and C. Schönenberger, “Nanometer lithography on silicon and hydrogenated amorphous silicon with low energy electrons,” J. Vac. Sci. Technol. B 13, 805–811 (1995).Google Scholar
  53. [53]
    S. C. Minne, P. Flueckiger, H. T. Soh, and C. F. Quate, “Atomic force microscope lithography using amorphous silicon as a resist and advances in parallel operation,” J. Vac. Sci. Technol. B 13, 1380–1385 (1994).Google Scholar
  54. [54]
    E. S. Snow and P. M. Campbell, “Fabrication of Si nanostructures with an atomic force microscope,” Appl. Phys. Lett. 64, 1932–1934 (1994).CrossRefGoogle Scholar
  55. [55]
    H. Dai, N. Franklin, and J. Han, “Exploiting the properties of carbon nanotubes for nanolithography,” Appl. Phys. Lett. 73, 1508–1510 (1998).CrossRefGoogle Scholar
  56. [56]
    H. Sugimura, T. Uchida, N. Kitamura, and H. Masuhara, “Tip-induced anodization of titanium surfaces by scanning tunneling microscopy: A humidity effect on nanolithography,” Appl. Phys. Lett. 63, 1288–1290 (1993).CrossRefGoogle Scholar
  57. [57]
    T. Thundat, L. A. Nagahara, P. I. Oden, S. M. Lindsay, M. A. George, and W. S. Glaunsinger, “Modification of tantalum surfaces by scanning tunneling microscopy in an electrochemical cell,” J. Vac. Sci. Technol. A 8, 3537–3541 (1990).CrossRefGoogle Scholar
  58. [58]
    H. J. Song, M. J. Rack, K. Abugharbieh, S. Y. Lee, V. Khan, D. K. Ferry, and D. R. Allee, “25 nm chromium oxide lines formed by scanning tunneling lithography in air,” J. Vac. Sci. Technol. B 12, 3720–3724 (1994).CrossRefGoogle Scholar
  59. [59]
    E. S. Snow, D. Park, and P. M. Campbell, “Single-atom point contact devices fabricated with an atomic force microscope,” Appl. Phys. Lett. 69, 269–271 (1996).Google Scholar
  60. [60]
    H. Sugimura, T. Uchida, N. Kitamura, and H. Mauhara, “Scanning tunneling microscope tip-induced anodization of titanium: characterization of the modified surface and application to the metal resist process for nanolithography,” J. Vac. Sci. Technol. B 12, 2884–2888 (1994).CrossRefGoogle Scholar
  61. [61]
    K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian, and J. S. Harris, “Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanoxidation process for the TiOX/Ti system,” Appl. Phys. Lett. 68, 34–36 (1996).CrossRefGoogle Scholar
  62. [62]
    S. C. Minne, S. R. Manalis, A. Atalar, and C. F. Quate, “Independent parallel lithography using the atomic force microscope,” J. Vac. Sci. Technol. B 14, 24562461 (1996).Google Scholar
  63. [63]
    M. A. McCord, “Lithography with the scanning tunneling microscope,” Ph.D. Thesis, Stanford University (1987).Google Scholar
  64. [64]
    S. W. Park, H. T. Soh, C. F. Quate, and S.-I. Park, “Nanometer scale lithography at high scanning speeds with the atomic force microscope using spin on glass,” Appl. Phys. Lett. 67, 2415–2417 (1995).CrossRefGoogle Scholar
  65. [65]
    International Technology Roadmap for Semiconductors (San Jose: Semiconductor Industry Association, 1997). Data also reflects 1998 update to the roadmap.Google Scholar
  66. [66]
    G. E. Moore, “Progress in digital integrated electronics,” Proc. IEDM, 11–13 (1975).Google Scholar
  67. [67]
    H. Levinson, “How far will optics take us?” presented at Stanford University 5/10/ 99.Google Scholar
  68. [68]
    L. F. Thompson, C. G. Willson, and M. J. Bowden, Introduction to Microlithography ( Washington, DC: American Chemical Society, 1994 ).Google Scholar
  69. [69]
    M. Rothschild, “157 nm: The deepest deep-UV yet,” presented at the 43rd International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, Marco Island, FL, 1–4 June 1999.Google Scholar
  70. [70]
    D. A. Tichenor, G. D. Kubiak, and R. H. Stulen, “Extreme ultraviolet lithography for circuit fabrication at 0.1 gm feature size,” Proc. SPIE 2523, 23–28 (1995).CrossRefGoogle Scholar
  71. [71]
    C. W. Gwyn, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 31423149 (1998).Google Scholar
  72. [72]
    J. P. Silverman, “X-ray lithography: Status, challenges, and outlook for 0.13 µm,” J. Vac. Sci. Technol. B 15, 2117–2124 (1997).CrossRefGoogle Scholar
  73. [73]
    S. J. Wind, Y. Taur, Y. H. Lee, R. G. Viswanathan, J. J. Bucchignano, A. T. Pomerene, R. M. Sicina, K. R. Milkove, J. W. Stiebritz, R. A. Roy, C. K. Hu, M. P. Manny, S. Cohen, W. Chen, “Lithography and fabrication processes for sub-100nm scale complementary metal-oxide-semiconductor devices and circuits,” J. Vac. Sci. Technol. B 13, 2688–2695 (1995).CrossRefGoogle Scholar
  74. [74]
    A. Broers, in Nanostructure Physics and Fabrication, edited by M. A. Reed and W. P. Kirk ( Academic Press, San Diego, CA, 1989 ), p. 421.Google Scholar
  75. [75]
    T. H. P. Chang, M. G. R. Thomson, E. Kratschner, H. S. Kim, M. L. Yu, K. Y. Lee, S. A. Richtson, and B. W. Hussey, “Electron beam microcolumns for lithography and related applications,” J. Vac. Sci. Technol. B 14, 3774–3781 (1996).CrossRefGoogle Scholar
  76. [76]
    A. W. Baum, J. E. Schneider, R. F. W. Pease, M. A. McCord, W. E. Spicer, K. A. Costello, V. W. Aebi, “Semiconductor on glass photocathodes for high throughput maskless electron beam lithography,” J. Vac. Sci. Technol. B 15, 2707–2712 (1997).CrossRefGoogle Scholar
  77. [77]
    G. Winograd, L. Han, M. A. McCord, R. F. W. Pease, and V. Krishnamurthi, “Multiplexed blanker array for parallel electron beam lithography,” J. Vac. Sci. Technol. B 16, 3175–3176 (1998).CrossRefGoogle Scholar
  78. J. A. Liddle,“The scattering with angular limitation in projection electron-beam lithography (SCALPEL) system,” Jpn. J. Appl. Phys. 1 35 6663–6671 (1995).Google Scholar
  79. H. C. Pfeiffer,“Projection reduction exposure with variable axis immersion lenses: Next generation lithography,” J. Vac. Sci. Technol. B 17 2840–2846 (1999).Google Scholar
  80. [80]
    J. Melngailis, A. A. Mondelli, I. L. Berry, and R. Mohondro, “A review of ion projection lithography,” J. Vac. Sci. Technol. B 16, 927–957 (1998).CrossRefGoogle Scholar
  81. [81]
    I. L. Berry, “Economic and technical case for ion projection lithography,” J. Vac. Sci. Technol. B 16, 2444–2448 (1998).CrossRefGoogle Scholar
  82. [82]
    S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129 (1996).Google Scholar
  83. [83]
    M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S.V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and flash imprint lithography: A new approach to high-resolution patterning,” Proc. SPIE 3676 (1999).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hyongsok T. Soh
    • 1
  • Kathryn Wilder Guarini
    • 1
  • Calvin F. Quate
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations