Heterojunction Transistors at Low Temperature

  • Frédéric Aniel
  • Robert Adde


We review the main trends observed when cooling III–V High Electron Mobility Transistors (HEMT’s) and Heterojunction Bipolar Transistors (HBT’s) with a special interest for their high frequency (HF) properties. If there are some references dealing with the temperature parameter dependence of GaAs devices, there are few data published on InP transistors and their intrinsic parameters at low temperature (LT) down to liquid nitrogen temperature (LNT) and beyond. There is a large amount of informations available on GaAs MESFET’s, HEMT’s and HBT’s in the temperature range from 125°C to −50°C [1], but there are few ones at lower temperature. In [1] the MESFET was treated in depth, including self-heating but noise was not considered. In this chapter, section 1 is devoted to the LT carrier transport properties of the III–V semiconductors used in state of the art HF transistors. We discuss in section 2 the HEMT static, dynamic and HF noise properties at low temperature with the main emphasis on the InP HEMT. In section 3 we investigate in a similar way the low temperature behaviour of the InP HBT. As often as possible, the data are compared with corresponding performances of cooled GaAs devices and of state of the art transistors at 300K. Basic aspects about HEMT’s and HBT’s can be found in [2] and [5].


Impact Ionization Cryogenic Temperature Noise Performance High Electron Mobility Transistor Heterojunction Bipolar Transistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. E. Anholt, Electrical and Thermal Characterization of MESFETs, HEMTs and HBTs, Artech House, n° ISBN 0-89006-749-X, 1995.Google Scholar
  2. [2]
    J. Golio, Microwave MESFETs&HEMTs, Artech House, ISBN 0-89006-426-1, 1991.Google Scholar
  3. [3]
    P. K. Bhattacharya, Properties of Lattice-Matched and Strained Indium Gallium Arsenide, Emis Datarewiews series N°8, INSPEC publication, 1993.Google Scholar
  4. [4]
    S. Adachi, Physical properties of III–V semiconductor compounds InP, InAs, GaAs, GaP, InGaAs, and InGaAsP, A. Wiley-Interscience Publication, 1991.Google Scholar
  5. [5]
    J. J. Liou, Principles and Analysis of AlGaAs/Gaas Heterojunction Bipolar Transistor, n° ISBN 0-89006-587-X, 1996.Google Scholar
  6. [6]
    L. F. Eastman, Low Field Electron and Holes Mobilities in Lattice Matched InGaAs on InP, p103–103 in [3], 1993.Google Scholar
  7. [7]
    T. Ando, Self-consistent Results for a GaAs/AlxGal-xAs Heterojunction. II. Low Température Mobility, J. of the Physical Society of Japan, Vol. 51, No. 12, pp. 3900–3907, 1982.CrossRefGoogle Scholar
  8. [8]
    Thobel JL; Sleiman A; Bourel P; Dessenne F; Baudry L, Monte Carlo study of electron transport in III–V heterostructures with doped quantum wells, Journal-of-Applied-Physics. vol. 80, no. 2, p. 928–35, 1996.CrossRefGoogle Scholar
  9. [9]
    Hlou, Vaissiere JC; Nougier JP; Varani L; Houlet P; Hlou L; Reggiani L; Kocevar P, Nonequilibrium phonon effects on the transient high-field transport regime in InP, Physical-Review-B-(Condensed-Matter), vol. 53, no. 15, p. 9886–94, 1996.CrossRefGoogle Scholar
  10. [10]
    J. D. Oliver, L. F. Eastman, J. Electron Mater., vol. 9, n° 4, p. 693–712, 1980.CrossRefGoogle Scholar
  11. [11]
    M. Razeghi, The MOCVD Challenge, Adal Hilger, p. 79, 1989.Google Scholar
  12. [12]
    P. K. Bhattacharya, Low and High-Field Transport in Pseudomorphic InGaAs Based Hetreostructures, p117–126 in [3], 1993.Google Scholar
  13. [13]
    Y. Okuto and C. R. Crowell, Energy conservation considerations in the characterization of impact ionization in semiconductors, Phys. Rev. B, vol. 16, pp. 3076–3081, 1972.CrossRefGoogle Scholar
  14. [14]
    A. Neviani, G. Meneghesso, E. Zanoni, M. Hafizi, and C. Canali, Positive Temperature Dependence of the Electron Impact Ionization Coefficient in Ino. 53Gao. 47As/InP HBT’s, IEEE Electron Device Lett., vol. 18, no. 12, pp. 619–621, 1997.CrossRefGoogle Scholar
  15. [15]
    WC. Liu, H-J. Pan, W-C. Wang, K-B. Thei, K-W. Lin, K-H Yu, C-C. Cheng, Temperature-Depedent Heterojunction Bipolar Transistor, IEEE Electron Device Letters, Vol. 21, N° 11, 2000.Google Scholar
  16. [16]
    F. Aniel private communication.Google Scholar
  17. [17]
    N. Cavassilas, F. Aniel, P. Boucaud, R. Adde, H. Maher, J. Decobert, A. Scavennec, Electroluminescence of composite Channel AllnAs/InGaAs/InP/AllnAs HEMT, Journal of Applied Physics, Vol. 8, N°5, 2000.Google Scholar
  18. [18]
    Zanoni E; Meneghesso G; Menozzi R Electroluminescence and other diagnostic techniques for the study of hot-electron effects in compound semiconductor devices, JOURNAL-OF-CRYSTAL-GROWTH, 210(1–3), pp. 331–340, 2000.CrossRefGoogle Scholar
  19. [19]
    Blayac S; Riet M; Benchimol JL; Abboun M; Aniel F; Berdaguer P; Duchenois AM; Konczykowska A; Godin J, InP HBT self-aligned technology for 40 Gbit/s ICs: fabrication and CAD geometric model, Conference Proceedings, Eleventh International Conference on Indium Phosphide and Related Materials (IPRM’99) IEEE, Piscataway, NJ, USA; pp. p. 483–6, 1999.Google Scholar
  20. [20]
    F. Aniel, P. Boucaud, A. Sylvestre, P. Crozat, F. H. Julien, R. Adde, Y. Jin, Electro-luminescence Spectroscopy analysis of AlGaAs/InGaAs and AlGaAs/GaAs HEMTs, Journal of Applied Physics, 77 (5), 1995.Google Scholar
  21. [21]
    S. Lepaul, F. Aniel, L. Peymayeche, A. de Lustrac, F. Bouillault, R. Adde, Non-isothermal quasi-bidimensionnal energy balance model, Electron. Lett., Vol. 32, No. 7, pp. 692–694, 1996.CrossRefGoogle Scholar
  22. [22]
    S. Lepaul, F. Aniel, A. dustrac, F. Bouillault, R. Adde, Modeling hot spot in ultrashort gatelength pseudomorphic HEMTs, Proc. of ESSDERC’95, The Hague, pp. 303–306, Sept. 1995.Google Scholar
  23. [23]
    P. M. Mooney, Deep donor levels (DX centers) in III–V semiconductors, J. Appl. Phys., 67 (3), 1990.Google Scholar
  24. [24]
    D. J. Chadi et K. J. Chang, Energetics of DX-center formation in GaAs and AlxGal-xAs Alloys, Phys. Rev. B, Vol 39, no 14, 1989.Google Scholar
  25. [25]
    J. Bourgoin, M. Lannoo, Point Deffects in Semiconductors: Experimental Aspects, Springer Series in Solid-State Sciences, Editors: M. Cardona, P. Fulde, H.-J. Queisser, Spinger-Verlag, Berlin Heilberg New york, 1983.Google Scholar
  26. [26]
    Y. B. Jia et H. G. Grimmeiss, Field dependance of emission and capture rates of DX-related centers in AlxGa1-xAs, Phys. Rev. B, Vol 47, n°. 4, 1993.Google Scholar
  27. [27]
    J. K. Luo, H. Thomas, I. L. Morris, Deep levels in MOCVD Al0,48In0,52As/ InP, Electronic Letters, vol. 28, no. 8, pp. 797–799, 1992.CrossRefGoogle Scholar
  28. [28]
    W. P. Hong, S. Dhar, P. K. Bhattacharya, A. Chin, Deep levels and a possible D-X-like centre in molecular beam epitaxial InxA11-xAs, J. Electron. Mater., 16, pp. 271–274, 1987.CrossRefGoogle Scholar
  29. [29]
    F. Ducroquet, G. Guillot, K. Hong, D. Pavlidis, M. Gauneau, Deep level characterization of LP-MOCVD grown A10.48In0.52As, Physics and Applications of Defects in Advanced Semiconductors, Symposium. Mater. Res. Soc, Pittsburgh, PA, USA; XIII, p. 235–9, 1994.Google Scholar
  30. [30]
    S. Ababou, G. Guillot, S. Clark, G. Halkias, A. Georgakilas, K. Zekentes, Admittance spectroscopy measurements on AlInAs/GaInAs/AlInAs quantum well structures: evidence of a deep level assisted tunneling, 5th Indium Phosphide and Related Materials, pp. 151–154, Paris (France), Apr. 1993.Google Scholar
  31. [31]
    Hüseyin Sari and H. H. Wieder, DX centers in InxAl1-xAs, Journal of Applied Physics, Vol. 85, N°6, 1999.Google Scholar
  32. [33]
    Y. C. Pao, C. K. Nishimito, R. Majidi-Ahi, J. Archer, N. G. Bechtel, J. S. Harris, Characterization of surface-undoped In0.52A10.48As/In0.53Ga0.47As/InP High Electron Mobility Transistors, IEEE Transactions on Electron Devices, vol. 37, no. 10, pp. 2165–2170, 1990.CrossRefGoogle Scholar
  33. [34]
    Han J, Ferry D. K., Scaling of gate length in ultra-short channel heterostructure field effect transistors. Solid-State-Electronics, vol. 43; p. 335–41, 1999.CrossRefGoogle Scholar
  34. [35]
    Nguyen LD; Tasker PJ; Radulescu DC; Eastman LF, Characterization of ultra-high-speed pseudomorphic AlGaAs/InGaAs (on GaAs) MODFETs, IEEE Trans. E. D., vol. 36, no 10, 1989.Google Scholar
  35. [36]
    L. D. Nguyen, A. S. Brown, L. M. Jelloian, L. E. Larson, M. Matloubian, 650-Å self-aligned-gate pseudomorphic A10.48In0.52As/Ga0.20In0.80As high electron mobility transistors, IEEE Electron Device Letters, vol. 13, no. 3, pp. 143–145, 1992.CrossRefGoogle Scholar
  36. [37]
    Y. Hirachi and S. Kuroda, Status of Millimeter-wave MMIC’s and their applications in Japan, Proc. of GaAs 2000, Paris, pp. 369–373, October 2000.Google Scholar
  37. [38]
    Xu D., Suemitsu T, Osaka J, Umeda Y, Yamane Y, Ishii Y, Ishii T, Tamamura T., Depletion-and Enhancement-Mode MODFET’s for Ultrahigh-Speed Applications: An Electrochemical Fabrication Approach, IEEE Trans. on Electron Devices, vol. 47; pp. 33–43, 2000.CrossRefGoogle Scholar
  38. [39]
    Smith P. M, Liu S, Kao M, Ho P, Wang S, Duh K, Fu S, Chao P., W-Band High Efficiency InP-Based Power HEMT with 600GHz f max, Microwave and Guided Wave Letters, vol. 5, p. 230–32, 1995.CrossRefGoogle Scholar
  39. [40]
    Takenaka H; Ueda D, 0.15 μm T-shaped gate fabrication for GaAs MODFET using phase shift lithography, IEEE-Transactions-on-Electron-Devices., vol. 43, no. 2, p. 238–44, 1996.CrossRefGoogle Scholar
  40. [41]
    M. Zaknoune, B. Bonte, C. Gaquière, Y. Cordier, Y. Druelle, D. Théron and Y. Crosnier, InAlAs/InGaAs Metamorphic HEMT with high current density and high breakdown voltage, IEEE Electron Device Lett, vol. 19, no. 9, pp. 345–347, 1998.CrossRefGoogle Scholar
  41. [42]
    Hsu RT; Hsu WC; Kao MJ; Wang JS, Characteristics of a delta-doped GaAs/InGaAs p-channel heterostructure field-effect transistor, Applied-Physics-Letters, vol. 66, no. 21, p. 2864–6, 1995.CrossRefGoogle Scholar
  42. [43]
    Lour WS; Chang WL; Shih YM; Liu WC, New self-aligned T-gate InGaP GaAs field-effect transistors grown by LP-MOCVD, IEEE-ELECTRON-DEVICE-LETTERS, 20(6), pp. 304–306, 1999.CrossRefGoogle Scholar
  43. [44]
    Schimpf K; Sommer M; Horstmann M; Hollfelder M; van der Hart A; Marso M; Kordos P; Luth H, 0.1-mu m T-gate Al-free InP/InGaAs/InP pHEMTs for W-band applications using a nitrogen carrier for LP-MOCVD growth, IEEE-Electron-Device-Letters. vol. 18, no. 4, p. 144–6, 1997.CrossRefGoogle Scholar
  44. [45]
    T. Enoki, K. Arai, A. Kohzen, Y. Ishii, InGaAs/InP double-channel HEMT on InP, IEEE Proceedings of the 4th International Conference in Indium Phosphide and Related Materials, p. 371, 1992.Google Scholar
  45. [46]
    J. B. Shealy, M. Matloubian, T. Liu, V. Virk, J. Pusl, K-band high power/efficiency/breakdown GaInAs/InP composite channel HELTs, IEEE Microwave and Guided Wave Letters, vol. 7, n°. 9, p. 261, 1997.CrossRefGoogle Scholar
  46. [47]
    Zaknoune M; Cordier Y; Bollaert S; Ferre D; Theron D; Crosnier Y, 0.1-μm high performance double heterojunction In0.32A10.68As/In0.33Ga0.67As metamorphic HEMTs on GaAs, SOLID-STATE-ELECTRONICS, 44(9), pp. 1685–1688, 2000.CrossRefGoogle Scholar
  47. [48]
    Bollaert S; Cordier Y; Zaknoune M; Happy H; Hoel V; Lepilliet S; Theron D; Cappy A, The indium content in metamorphic InxAl1-xAs/InxGa1-xAs HEMTs on GaAs substrate: a new structure parameter, SOLID-STATE-ELECTRONICS, 44(6), pp. 1021–1027, 2000.CrossRefGoogle Scholar
  48. [49]
    M. W. Pospieszalski, S. Weinreb, P. C. Chao, U. K. Mishra, S. C. Palmateer, P. M. Smith, J. M. Hwang, Noise parameters and light sensitivity of low-noise high-electron-mobility transistors at 300 and 125K, IEEE Trans. El. Dev., vol. 33, pp. 218–222, 1986.CrossRefGoogle Scholar
  49. [50]
    K. H. G. Duh, M. W. Pospieszalski, W. F. Kopp, P. Ho, A. A. Jabra, P. C. Chao, P. M. Smith, L. F. Lester, J. M. Ballingall, S. Weinreb, Ultra-low-noise cryogenic high electron mobility transistors, IEEE Trans. El. Dev., 35, pp. 249–255, 1988.CrossRefGoogle Scholar
  50. [51]
    J. K. Joshin, Y. Mimino, S. Ohmura et Y. Hirachi, Noise Performance at cryogenic Temperature of AlGaAs/InGaAs HEMT’s with 0.15μm T-Shaped WSix Gates”, IEEE Trans on Electron Devices., Vol. 39, no. 3, 1992.Google Scholar
  51. [52]
    J. Laskar, J. Kolodzey, “Cryogenic vacuum high frequency probe station”, J. Vac. Sci. Technol., vol. B8, pp. 1161–1165, 1990.Google Scholar
  52. [53]
    P. Crozat, J-C. Hénaux, G. Vernet, Precise Determination of Open Circuit Capacitance of Coplanaire Probes for On-Wafer Automatic Network Analyser Measurement, Electronics Lett., Vol. 27, No. 16, 1991.CrossRefGoogle Scholar
  53. [54]
    P. Crozat, D. Bouchon, J. C. Henaux, F. Aniel, R. Adde et G. Vernet, Cryogenic on-chip high frequency device characterization, ESSDERC’93, Proceedings, Grenoble, pp531–534, 1993.Google Scholar
  54. [55]
    F. Aniel, N. Zerounian, R. Adde, M. Zeuner, T. Hackbarth, U. König, Low temperature analysis of 0.25 μm T-Gate SiGe n-MODFET, IEEE Transaction on Electron Device, VOL 47, n°7, pp. 1477–83, 2000.CrossRefGoogle Scholar
  55. [56]
    R. Adde, P. Crozat, A de Lustrac, F. Aniel, III–V Semiconductor Device Physics and Applications for low temperature Electronics, Proceedings 183rd Meeting of the Electrochemical Society, Honolulu, Hawaii, pp. 175–190, May 1993.Google Scholar
  56. [57]
    P. Crozat, D. Bouchon, A de Lustrac, F. Aniel, Y. Jin, R. Adde, Cryogenic behavior of ultrashort gate AlGaAs/GaAs and pseudomorphic AlGaAs/InGaAs/GaAs HEMT’s, Microelec. Eng., Vol. 19, pp. 861–864, 1992.CrossRefGoogle Scholar
  57. [58]
    F. Aniel, P. Crozat, A de Lustrac, Y. Jin, R. Adde, Y. Jin, H. Launois, M. Van Hove, M. Van Rossum, Physical behaviour of pseudomorphic, HEMTs A10.25Ga0.75As/In0.2Ga0.8As/GaAs at low temperature, Proc. of ESSDERC 93, Grenoble, pp. 757–760, Septembre 1993.Google Scholar
  58. [59]
    F. Aniel, Y. Jin-Delorme, P. Crozat, A. de Lustrac, R. Adde, M. Van Hove, W. de Raedt, M. Van Rossum, Y. Jin, H. Launois, Gate length electric parameter dependences of ultra-submicrometer d-doped pseudomorphic, Elec. Letters, Vol. 29, No. 17, 1993.Google Scholar
  59. [60]
    F. Aniel, A. Sylvestre, Y. Jin, P. Crozat, R. Adde, Enhancements and Degradations of Ultrashort Gate GaAs and InP HEMTS Properties at Cryogenic Temperatures: an Overview, Journal de physique IV, 1996.Google Scholar
  60. [61]
    Sylvestre A; Crozat P; Adde R; De-Lustrac A; Jin Y, Low temperature low voltage operation of HEMTs on InP, Journal-de-Physique-IV, vol. 4, no. C6, P. C6/153-8A, 1994.Google Scholar
  61. [62]
    M. H. Somerville, A. Ernst, and J. A. Alamo, A physical model for the kink effect in InAlAs/InGaAs HEMT’s, IEEE Trans. Electron Devices, vol. 47, pp. 922–930, 2000.CrossRefGoogle Scholar
  62. [63]
    N. Cavassilas, F. Aniel, R. Adde, M. Zaknoune, S. Bollaert, Y. Cordier, D Théron, A Cappy, Electroluminescence of Metamorphic InxAl1-xAs / InxGal-xAs HEMTs on GaAs substrate, Proc. of GaAs2000, Paris, pp. 68–77, 2000.Google Scholar
  63. [64]
    A. Sylvestre, F. Aniel, P. Boucaud, F. H. Julien, P. Crozat, R. Adde, A. De Lustrac, Y. Jin, Electroluminescence Spectroscopy of HEMTs on InP at cryogenic temperatures, Journal of Applied Phys., 80(1), pp 464–469, 1996.CrossRefGoogle Scholar
  64. [66]
    C. Heedt, F. Buchali, W. Prost, W. Brockerhoff, D. Fritzsche, H. Nickel, R. Lösch, Drastic reduction of gate leakage in InAlAs/InGaAs HEMT’s using a pseudomorphic InAlAs hole barrier layer, IEEE Transactions on Electron Devices, vol. 41, no. 10, pp. 1685–1689, 1994.CrossRefGoogle Scholar
  65. [67]
    J. Dickmann, S. Schildberg, A. Geyer, B. E. Maile, A. Schurr, S. Heuthe, Breakdown mechanisms in the on-state mode of operation of InAlAs/InxGa1-xAs pseudomorphic HEMTs, 6th International Conference on InP and Related Materials, pp. 335–338, Santa-Barbara (USA), 1994.Google Scholar
  66. [68]
    C. Heedt, F. Buchali, W. Prost, D. Fritzsche, H. Nickel, F. J. Tegude, Characterization of impact-ionization in InAlAs/InGaAs/InP HEMT structures using a novel photocurrent-measurement technique, 5th International Conference on InP and Related Materials, pp. 247–250, Paris (France), Apr. 1993.Google Scholar
  67. [69]
    F. Buchali, C. Heedt, W. Prost, I. Gyuro, H. Meschede, F. J. Tegude, Analysis of gate leakage on MOVPE grown InAlAs/InGaAs-HFET, Microelectronic Engineering, vol. 19, pp. 401–404, 1992.CrossRefGoogle Scholar
  68. [70]
    D.J. Newson, R.P. Merrett, B.K. Ridley, Control of gate leakage in InAlAs/InGaAs HEMTs, Electronics Letters, vol. 27, no. 17, pp. 1592–1593, 1991.CrossRefGoogle Scholar
  69. [71]
    Ohnaka K; Shibata J, Excess gate-leakage current of InGaAs junction field-effect transistors, Journal-of-Applied-Physics, vol. 63, no. 9, p. 4714–17, 1988.CrossRefGoogle Scholar
  70. [72]
    A. Neviani, G. Meneghesso, E. Zanoni, M. Hafizi, and C. Canali, Positive Temperature Dependence of the Electron Impact Ionization Coefficient in Ino. 53Gao. 47As/InP HBT’s, IEEE Electron Device Lett., vol. 18, no. 12, pp. 619–621, 1997.CrossRefGoogle Scholar
  71. [73]
    K.K. Thornbe, Application of scaling to problemn in high-field electronic Transport, J. Appl. Phys., 52(1), pp. 279–290, 1981.CrossRefGoogle Scholar
  72. [74]
    W. Kruppa, J.B. Boos, Low-temperature characteristics of 0.35μm AlSb/InAs HEMTs, Electronics Letters, vol. 30, no. 16, pp. 1358–1359, 1994.CrossRefGoogle Scholar
  73. [75]
    S.M. Sze, Physics of semiconductor devices, Second Edition, John Wiley & Sons, 1981.Google Scholar
  74. [76]
    S.R. Bahl, J.A. del Alamo, J. Dickmann, S. Schildberg, Off-state breakdown in InAlAs/InGaAs MODFET’s, IEEE Transactions on Electron Devices, vol. 42, no. 1, pp. 15–22, 1995.CrossRefGoogle Scholar
  75. [77]
    F.A. Padovani, R. Stratton, Field and thermoionic-field emission in Schottky barriers, Solid-State Electronics, vol. 9, pp. 695–707, 1966.CrossRefGoogle Scholar
  76. [78]
    C.R. Crowell, V.L. Rideout, Solid-State Electronics, vol. 12, pp. 89, 1969.CrossRefGoogle Scholar
  77. [79]
    R. Lai, P.K. Bhattacharya, D. Yang, T.L. Brock, S.A. Alterovitz, A.N. Downey, Characteristics of 0.8-and 0.2-μm gate length InxGa1-xAs/In0,. 52A10.48As/InP (0.53≤x≤0.70) modulation-doped field-effect transistors at cryogenic temperatures, IEEE Trans. on Electron Devices, Vol. 39, no. 10, pp. 2206–2213, 1992.CrossRefGoogle Scholar
  78. [80]
    A. Sylvestre, P. Crozat, R. Adde, A. De Lustrac, Y. Jin, Cryogenic high frequency investigations of 0.2 μm InAlAs/InGaAs/InP HEMTs, 5th International Conference on Indium Phosphide and Related Materials, Paris, Library of Congress 93-77243, 1993.Google Scholar
  79. [81]
    A. Sylvestre, P. Crozat, R. Adde, A. De Lustrac, Y. Jin, Cryogenic investigation of gate leakage and RF performances down to 50 K of 0.2 μm AlInAs/GaInAs/InP HEMTs, Electronic Letters, Vol. 29, no. 24, pp. 2152–54, 1993.CrossRefGoogle Scholar
  80. [82]
    F. Aniel, N. Zerounian, A. Almeyda, V. Danelon, P Crozat, G. Vernet, R. Adde, J-C Harmand, C. Ladner, High Frequency analysis of InP Transistors versus Temperature, ESSDERC 97, pp. 708–711, Stuttgart, September 1997.Google Scholar
  81. [83]
    G. Dambrine, A. Cappy, F. Heliodore and E. Playez, A new method for determining the FET small-signal equivalent circuit, IEEE Trans. Microwave Theory Tech, Vol. 36, No. 7, pp. 1151–1159, 1988.CrossRefGoogle Scholar
  82. [84]
    A. Miras, and E. Legros, Very High-Frequency Small-Signal Equivalent Circuit for Short Gate-Length InP HEMT’s, IEEE Trans. Microwave Theory Tech., vol. 45, no. 7, pp. 1018–1026, 1997.CrossRefGoogle Scholar
  83. [85]
    K. Yazbek, A. de Lustrac, Y. Jin, F. Aniel, P. Crozat, R. Adde, G. Vernet, Electrostatic capacitances in standard and pseudomorphic ultrashort gatelength HEMT’s, El. Lett., vol. 28, pp. 1776–78, 1992.CrossRefGoogle Scholar
  84. [86]
    F. Aniel, A. Sylvestre, Y. Jin, P. Crozat, G. Vernet, R. Adde, Comparative evolutions of short gate InGaAs channel HEMTs on InP and GaAs at cryogenic temperature, Proc. of GaAs’96, Paris, CNAM, pp. 4A7, juin 1996.Google Scholar
  85. [87]
    F. Aniel, Y. Jin-Delorme, P. Crozat, A. de Lustrac, R. Adde, M. Van Hove, W. De Raedt, M. Van Rossum, Y. Jin, H. Launois, Gate length electric parameter dependences of ultra-submicrometer d-doped pseudomorphic, Elec. Letters, Vol. 29, No. 17, 1993.Google Scholar
  86. [88]
    Thobel JL, Baudry L, Bourel P, Dessenne F, Charef. M., Monte Carlo Modeling of High-Field Transport in III–V Heterostructures, J. Appl. Phys., vol. 74; pp. 6274–6280, 1993.CrossRefGoogle Scholar
  87. [89]
    H. Meschede, On-Wafer microwave measurement setup for investigations on HEMT’s and high Tc superconductors at cryogenic temperatures down to 20 K, IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 12, pp. 2325–2331, 1992.CrossRefGoogle Scholar
  88. [90]
    L.P. Sadwick, K.L. Wang, A treatise on the capacitance-voltage relation of high electron mobility transistors, IEEE Transactions on Electron Devices, Vol. 33, pp. 651–656, 1986.CrossRefGoogle Scholar
  89. [91]
    R. Lai, P.K. Bhattacharya, S.A. Alterovitz, A.N. Downey, C. Chorey, Low-temperature microwave characteristics of pseudomorphic InxGa1-xAs/In0,. 52A10.48As modulation-doped field-effect transistors, IEEE Electron Device Letters, Vol. 11, no. 12, pp. 564–566, 1990.CrossRefGoogle Scholar
  90. [92]
    Moneger S; Baltagi Y; Benyattou T; Tabata A; Ragot B; Guillot G; Georgakilas A; Zekentes K, Halkias G, Photoreflectance studies of lattice-matched and strained InGaAs/InAlAs single quantum wells, Journal-of-Applied-Physics. vol. 74, no. 2, p. 1437–9, 1993.CrossRefGoogle Scholar
  91. [93]
    Baudry L; Thobel JL; Charef M; Dessenne F; Bourel P, Influence of the screening model and wave-function shape on impurity scattering mobility in quantum wire, Journal-of-Applied-Physics, vol. 74, no. 10, p. 6281–8, 1993.CrossRefGoogle Scholar
  92. [94]
    Thobel JL; Baudry L; Cappy A; Bourel P; Fauquembergue R, Electron transport properties of strained InxGa1-xAs, Applied-Physics-Letters, vol. 56, no. 4, p. 346–8, 1990.CrossRefGoogle Scholar
  93. [95]
    P. Ho, M.Y. Kao, P.C. Chao, K.H.G. Duh, J.M. Ballingall, S.T. Allen, Extremely high gain 0.15 μm gate-length InAlAs/InGaAs/InP HEMTs, Electronics Letters, vol. 27, no 4, pp. 325–327, 1991.CrossRefGoogle Scholar
  94. [96]
    M. Wojtowicz, R. Lai, D.C. Streit, G.I. Ng, T.R. Block, K.L. Tan, P.H. Liu, 0.10 μm graded InGaAs channel InP HEMT with 305 GHz f T and 340 GHz f MAX, IEEE Electron Device Letters, vol. 15, no. 11, pp. 477–479, 1994.CrossRefGoogle Scholar
  95. [97]
    G.I. Ng, W.P. Hong, D. Pavlidis, M. Tutt, P.K. Bhattacharya, Characteristics of strained In0.65Ga0.35As/In0.52A10.48As HEMT with optimized transport parameters, IEEE Electron Device Letters, vol. 9, no. 9, pp. 439–441, 1988.CrossRefGoogle Scholar
  96. [98]
    G.I. Ng, D. Pavlidis, M. Jaffe, J. Singh, H.F. Chau, Design and experimental characteristics of strained In0.52A10.48As/InxGal-xAs (x>0.53) HEMT’s, IEEE Transactions on Electron Devices, Vol. 36, no. 10, pp. 2249–2259, 1989.CrossRefGoogle Scholar
  97. [99]
    G.I. Ng, D. Pavlidis, M. Tutt, J.E. Oh, P.K. Bhattacharya, Improved strained HEMT characteristics using double-heterojunction In0.65Ga0.35As/In0.52A10.48As design, IEEE Electron Device Letters, vol. 10, no. 3, pp. 114–116, 1989.CrossRefGoogle Scholar
  98. [100]
    T. Enoki, Y. Ishii, T. Tamamura, T-gate process and delay time analysis for sub-1/4-μm-gate InAlAs/InGaAs HEMT’s, 3rd Indium Phosphide and Related Materials, pp. 371–376, Cardiff (G.B. ), 1991.Google Scholar
  99. [102]
    S.H. Kogan, Electronic noise and fluctuations in solids, Cambridge University Press, 1996.Google Scholar
  100. [103]
    R.Q. Lane, The determination of device noise parameters, Proc of IEEE, pp. 161–162, 1969.Google Scholar
  101. [104]
    G. Dambrine, H. Happy, F. Danneville et A. Cappy, A new method for on wafer noise measurement, IEEE Trans. on MTT, vol. 41, N°3, 1993.Google Scholar
  102. [105]
    P.J. Tasker, W. Reinert, Braunstein J; Schlechtweg M, Direct extraction of all four transistor noise parameters from a single figure measurement, Conference Proceedings of 22nd European Microwave Conference 92, Microwave Exhibitions and Publishers, Tunbridge Wells, UK, p. 157–62, vol. 1, 1992.Google Scholar
  103. [106]
    V. Danelon, P. Crozat, F. Aniel et G. Vernet, Four noise parameter determination method for transistors based on the frequency dependence of the noise figure, Electronics Letters, vol. 34, n°16, pp. 1612–1614, 1988.CrossRefGoogle Scholar
  104. [107]
    S. Withington, Scattered noise waves in microwave and mm-wave networks, Microwave Journal, pp. 169–178, 1989.Google Scholar
  105. [108]
    Werling T; Bourdel E; Pasquet D; Boudiaf A, Determination of wave noise sources using spectral parametric modeling, IEEE-Transactions-on-Microwave-Theory-and-Techniques, vol. 45, no. 12, p. 2, 1997.Google Scholar
  106. [109]
    M. Mitama, H. Katoh, An improved computational method for noise parameter measurement, IEEE trans. on MTT, pp. 612–615, 1979.Google Scholar
  107. [110]
    L. Escotte, R. Plana et J. Graffeuil, Evaluation of noise parameters extraction methods, IEEE Trans. on MTT, vol. 41, n°3, 1993.Google Scholar
  108. [111]
    Escotte L, Sejalon F, Graffeuil J, Noise parameter measurement of microwave transistors at cryogenic temperature, IEEE-Transactions-on-Instrumentation-and-Measurement, vol. 43, no. 4, p. 536–43, 1994.CrossRefGoogle Scholar
  109. [112]
    S. Weinreb, Low-Noise Cooled GASFET Amplifiers, IEEE Transactions on Microwave Theory and Techniques, Vol-MTT-28, N° 10, pp. 1041–1054, 1980.CrossRefGoogle Scholar
  110. [113]
    M.W. Pospieszalski, Modeling of noise parameters of MESFET’s and MODFET’s and their frequency temperature dependence, IEEE-MTT, vol. n°37, N°9, pp. 1340–1350, 1989.CrossRefGoogle Scholar
  111. [114]
    Crozat P; Boutez C; Chaubet M; Danelon V; Sylvestre A; Vernet G, 50 Ω noise measurements with full receiver calibration without tuner, Electronics Lett., vol. 32, no. 3, p. 261–2, 1996.CrossRefGoogle Scholar
  112. [115]
    V. Danelon, F. Aniel, J. Mba, M. Riet, J.L. Benchimol, P. Crozat, G. Vernet and R. Adde, Noise Parameters of InP-Based Double Heterojunction Base Collector Self-Aligned Bipolar Transistors, IEEE Microwave and Guided wave Letters, Vol. 9, No. 5, pp. 195–197, 1999.CrossRefGoogle Scholar
  113. [116]
    V. Daneion, F. Aniel, M. Riet, P. Crozat, G. Vernet and R. Adde, Noise Characterization of InP Based Heterojunction Bipolar Transistor at Microwave Frequencies, Proc. of ESSDERC’98, Bordeaux, pp. 408–411, Septembre 1998.Google Scholar
  114. [117]
    V. Danelon, F. Aniel, M. Riet, S. Blayac, P. Crozat, G. Vernet and R. Adde, Noise Modeling of InP Based Base & Collector Self-aligned Double Heterojunction Bipolar Transisto, Proc. of ESSDERC’99, Louvain, pp. 556–559, 1999.Google Scholar
  115. [118]
    Y. Jin, Comparisons of double and single recess 0,15μm gate length δ-doped AlGaAs/GaAs, Microelectronic Engineering, 13, p. 381, 1991.CrossRefGoogle Scholar
  116. [119]
    Marian W. Pospieszalski and Edward J. Wollack, Ultra-Low-Noise InP Field effect Transistor amplifiers for radio Astronomy receivers, Proc. of GaAs 2000, Paris, pp. 5–8, Oct. 2000.Google Scholar
  117. [120]
    M.W. Pospieszalski, S. Weinreb, R.D. Norrod and R. Harris, FET’s and HEMT’s at Cryogenic Temperatures; Their Properties and Use in Low Noise Amplifiers, IEEE Trans. On Microwave Theory and Techniques, VOL. 36, NO. 3, 1988.Google Scholar
  118. [121]
    Pospieszalski MW, Ultra-low-noise receivers for the 1 to 120 GHz frequency range, 23rd European Microwave Conference Proceedings., Reed Exhibition Companies, Tunbridge, pp. 73–9, vol. 1, 1993.Google Scholar
  119. [122]
    Webster RT; Slobodnik AJ; Roberts GA, Determination of InP HEMT noise parameters and S-parameters to 60 GHz, IEEE-Transactions-on-Microwave-Theory-and-Techniques, vol. 43, no. 6, p. 1216–25, 1995.CrossRefGoogle Scholar
  120. [123]
    K.H. George Duh, 32 GHz Cryogenically Cooled HEMT Low Noise Amplifiers, IEEE Trans. On Electron Devices, Vol. 36, N°. 8, 1989.Google Scholar
  121. [124]
    P. Rojo-Romeo, P. Viktorovitch, X. Letartre, J. Tardy, D. Thompson and J.G. Simmons, A Comparative Study of The Low Frequency Noise in InP Based Heterojunction Field Effecte Transistors (HFET’s), Proceedings of IPRM95, p. ThP4, 1995.Google Scholar
  122. [125]
    R.A. Pucel, H.A. Haus and H. Statz, Signal and noise properties of GaAs microwave FET, Advance in Electronics and Electron Physics, Vol. 38, 1973.Google Scholar
  123. [126]
    A. Van der Ziel, Noise in solid state device and circuits, London Butterworths scientific publication, 1986.Google Scholar
  124. [127]
    Cappy A; Vanoverscheide A; Schortgen M; Versnaeyen C; Salmer G, Noise modeling in submicrometer-gate two-dimensional electron-gas field-effect transistors, IEEE-Transactions-on-Electron-Devices, vol. ED-32, no. 12, p. 2787–96, 1995.Google Scholar
  125. [128]
    S. Blayac, M. Riet, J.L. Benchimol, M. Abboun, F. Aniel, P. Berdaguer, A.M. Duchenois, A. Konczykowska, J. Godin, 1999, InP HBT self-aligned technology for 40 Gbit/s Ic’s: Fabrication and CAD geometric model, in Proc. IPRM’99, Davos, 1999.Google Scholar
  126. [129]
    S.M. Lardizabal, L.P. Dunleavy and A. Boudiaf, New Aspects Concerning The Bias And Temperature Dependence Of Intrinsic Noise Generators In Extracted FET Models, IEEE MTT-S digest, TH1E-6, pp. 1325–8, 1996.Google Scholar
  127. [130]
    B. Bayraktaroglu, GaAs HBT’s for microwave integrated circuits, Proc. IEEE, vol. 81, p. 1762, 1993.CrossRefGoogle Scholar
  128. [131]
    B. Jalali and S.J. Pearton, InP HBTs: Growth, Processing, and Applications, B. Jalali and S.J. Pearton Eds., Norwood, MA: Artech House, 1995.Google Scholar
  129. [132]
    R. Katoh, M. Kurata, A Model-Based Comparison of AlInAs/GaInAs and InP/GaInAs HBT’s: A Monte Carlo Study, IEEE Trans. On Electron Devices, Vol. 37, N°5, 1990.Google Scholar
  130. [133]
    L. Giguerre, F. Aniel, M. Abboun, R. Adde, M. Riet, S. Blayac, Cryogenic behaviour of double heterojonction bipolar InP based transistor, Proc. of WOLTE IV (Workshop on Low Temperature Electronics), La Haye, June 2000.Google Scholar
  131. [134]
    J. Mba, J.L. Benchimol, A.M. Duchenois, M. Riet, J. Godin and A. Scavennec, Beneficial contribution of Compositionally InxGa1-xAs Graded Base InP Double Heterojunction Bipolar Transistor (DHBT’s) for Very High Speed Transmission Circuits, in Proc. ESSDERC 98, Bordeaux, 1998.Google Scholar
  132. [135]
    H. Wang, K.-W. Chang, D.C.-W. Lo, L.T. Tran, J.C. Cowles, T.R. Block, D.C. Streit, B.R. Allen, A 62GHz monolithic InP-based HBT VCO, IEEE Microwave and Guided Wave Letters, vol. 5, n°l 1, pp. 388–290, 1995.CrossRefGoogle Scholar
  133. [136]
    W. Walukiewicz, J. Lagowski, L. Jastrezbski, H.C. Gatos, Minority-carrier mobility in p-type GaAs, J. Appl. Phys., 68(2), p. 5040–2, 1979.CrossRefGoogle Scholar
  134. [137]
    H. Taniyama, M. Tomizawa, T. Furuta, A. Yoshi, A MC study of minority-electron transport in p-GaAs, J. Appl. Phys., 66(10), pp. 621–6, 1989.Google Scholar
  135. [138]
    C.S. Ng, P.A. Houston, H. Yow, Analysis of the temperature dependence of current Gain in heterojunction Bipolar Transistors, IEEE Trans. On Electron Devices, 44(1), pp. 17–24, 1997.CrossRefGoogle Scholar
  136. [139]
    N. Zerounian, F. Aniel, A. KonczykowoskA, N. Kauffmann, R. Adde, Extraction Strategies of Semiconductor Devices Parameters Using Symbolic Approach and Optimization Methods, Proc. of ECCTD 97, Budapest, 1997.Google Scholar
  137. [140]
    S. Yamahata, K. Kurishima, H. Ito, Y. Matsuoka, Over 220 GHz fT and fmax InP/InGaAs double-heterojunction bipolar transistors with a new hexagonal-shaped emitter, GaAs IC Symposium 95, pp. 163–166, 1995.Google Scholar
  138. [141]
    R.N. Nottenburg, M. Banu, B. Jalali, D.A. Humphrey, R.K. Montgomery, R.A. Hamm, M.B. Panish, 5V DC-12 GHz InP/InGaAs Amplifier, Electronic Lett., vol. 26, n° 24, pp. 2016–2018, 1990.CrossRefGoogle Scholar
  139. [142]
    J.F. Jensen, W.E. Stanchina, R.A. Metzger, D.B. Rensch, R.F. Lohr, R.W. Quen, M.W. Pierce, Y.K. Allen, P.F. Lou, AlInAs/InGaAs HBT IC technology, J. of Solid State Circuits, vol. 26, n° 3, pp 415–421, 1991.CrossRefGoogle Scholar
  140. [143]
    M. Hafizi, J.F. Jensen, R.A. Metzger, W.E. Stanchina, D.B. Rensch, Y.K. Allen, 39. 5-GHz static frequency divider implemented in AlInAs/GaInAs HBT technology, Electron Device Lett., vol. 13, n°12, pp 612–614, 1992.CrossRefGoogle Scholar
  141. [144]
    H. Nakajima, K. Kurishima, S. Yamahata, T. Kobayashi, Y. Matsuoka, Highspeed InP/InGaAs HBT’s operated at submilliampere collector currents, Electronic Lett., vol. 29, n° 21, pp 1887–1888, 1993.CrossRefGoogle Scholar
  142. [145]
    H.F. Chau, E.A. Beam, High-speed InP/InGaAs heterojunction bipolar transistors, Electron Device Lett., vol. 14, n°8, pp. 388–390, 1993.CrossRefGoogle Scholar
  143. [146]
    J.L. Song, W.P. Hong, C.J. Palmstrom, B.P. Van der Gaag, K.B. Chough, Millimeter-wave InP/InGaAs heterojunction bipolar transistors with a subpicosecond extrinsic delay time, Electronic Lett., vol. 30, n°5, pp. 456–457, 1994.CrossRefGoogle Scholar
  144. [147]
    K. Kurishima, H. Nakajima, S. Yamahata, T. Kobayashi, Y. Matsupka, High Performance Zn-doped bade InP/InGaAs double Heterojunction bipolar transistor grown by metalorganic vapor phase epitaxy, Appl. Phys Lett. 64(9), pp. 1111–1113, 1994.CrossRefGoogle Scholar
  145. [148]
    M. Rodwel, Y. betser, S. Jaganathan, T. Mathew, PK. Sundararajan, S.C. Martin, R.P. Smith, Y. Wei, M. Urteaga, D. Scott, S. Long, Submicron Lateral scaling of HBTs and other vertical-transport devices: towards THz bandwidths, Proc. of GaAs 2000, Paris, October 2000, pp. 1–4, 2000.Google Scholar
  146. [149]
    Y.K. Chen, R.N. Nottenburg, M.B. Panish, R.A. Hamm, D.A. Humphrey, Subpicosecond InP/InGaAs heterostructure bipolar transistors, Electron Device Lett., vol. 10, n°6, pp 267–269, 1989.CrossRefGoogle Scholar
  147. [150]
    Llopis O; Plana R; Amine H; Escotte L; Graffeuil J, Phase noise in cryogenic microwave HEMT and MESFET oscillators, IEEE-Transactions-on-Microwave-Theory-and-Techniques, vol. 41, no. 3, p. 369–74, 1993.CrossRefGoogle Scholar
  148. [151]
    M. Hafizi, W.E. Stanchina, R.A. Metzger, P.A. Macdonald and F. Williams, Temperature Dependence of DC and RF characteristics of AlInAs/GaInAs HBT’s, IEEE Trans. Elect. Devices, 40(9), pp. 1583–8, 1993.CrossRefGoogle Scholar
  149. [152]
    Walukiewicz W; Lagowski J; Jastrzebski L; Gatos HC, Minority-carrier mobility in p-type GaAs, Journal-of-Applied-Physics, vol. 50, no. 7, p. 5040–2, 1979.CrossRefGoogle Scholar
  150. [153]
    Taniyama H; Tomizawa M; Furuta T; Yoshii A, A Monte Carlo study for minority-electron transport in p-GaAs, Journal-of-Applied-Physics, vol. 68, no. 2, p. 621–6, 1990.CrossRefGoogle Scholar
  151. [154]
    K. Sadra, C.M. Maziar, B.G. Streetman, D.S. Tang, Effects of multiband electron-hole Scattering and hole wave function symmetry on minority-electron transport in GaAs, J. Appl. Phys., 66(10), pp. 4791–4800, 1989.CrossRefGoogle Scholar
  152. [155]
    J.R.H.S. Lowney and Bennett, Majority and minority electron and hole mobilities in heavily doped GaAs, J. Appl. Phys., 69(10), pp. 7102–10, 1991.CrossRefGoogle Scholar
  153. [156]
    R.K. Ahrenkiel, D.J. Dunlavy, D. Greenberg, J. Schlupmann, H.C. Hamaker and H.F. FacMillan, Applied Physics Letters, 51(8), pp. 776–9, 1987.CrossRefGoogle Scholar
  154. [157]
    M.I. Nathan, W.P. Dumke, K. Wrenner, S. Tiwari, S.L. Wright and K. A Jenkins, Electron mobility in p-type GaAs, Applied Physics Letters, 52(8), pp. 654–656, 1988.CrossRefGoogle Scholar
  155. [158]
    M.A. Osman and H.L. Grudin, Monte Carlo investigation of minority-electron transport in In0.53Ga0.47 As, Appl. Phys. Lett. 51(22), pp. 1812–14, 1987.CrossRefGoogle Scholar
  156. [159]
    J.L. Pelouard, P. Hesto, R. Castagné, Monte Carlo study of the double heterojunction bipolar transistor, Solid state electronics, 31, pp. 333–6, 1988.CrossRefGoogle Scholar
  157. [160]
    Teissier, J-L Pelouard, F. Mollot, Direct measurement of ballistic electron distribution and relaxation length in InP-based Heterojunction bipolar Transistor using electroluminescence spectroscopy, Applied Physics Letters, 72(21), pp. 2730–2732, 1998.CrossRefGoogle Scholar
  158. [161]
    J.J. Liou and Shakouri, Collector Signal Delay Time and Collector Transit Time of HBTs including Velocity Overshoot, Solid-State Electronics, 35(1), pp. 15–19, 1992.CrossRefGoogle Scholar
  159. [162]
    L Escorte, J.P. Roux, R. Plana, J. Graffeuil, A. Gruhle, Noise modeling of microwave heterojunction bipolar transistors, IEEE Trans. on Electron Device, vol. 43, N° 2, pp. 293–297, 1995.Google Scholar
  160. [163]
    L Escotte, J.G. Tartarin, R. Plana, J. Graffeuil, High-frequency noise in heterojunction bipolar transistors, Solid State Electronics, 42(4), pp. 661–663, 1998.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Frédéric Aniel
    • 1
  • Robert Adde
    • 1
  1. 1.IEF, UMR CNRS, Bât. 220Université Paris-SudOrsayFrance

Personalised recommendations