Nonlinear Robust Control of Power Systems

  • Qiang Lu
  • Yuanzhang Sun
  • Shengwei Mei
Part of the The Springer International Series on Asian Studies in Computer and Information Science book series (ASIS, volume 10)


In the previous nine chapters of this book, we explored the theory, methods, models, control laws and results of simulation for nonlinear optimal control. The research results in the field of nonlinear optimal control of power systems achieved by the authors of this book are not only in theory, but also in practice. A type of digital nonlinear optimal excitation controllers of generators (NOEC) developed by the National Key Laboratory of Power Systems in Tsinghua University, China, has been put into operation in a series of Chinese power stations. And the NOEC have played an important role in improving dynamic performance and stability of power systems. Moreover, a new type of digital nonlinear optimal governors (NOG) for hydro turbines has also been developed by the same Laboratory above mentioned. The application of the NOEC and NOG to the Three Gorge Power Station is hopeful.


Power System Robust Control Nonlinear Control System Disturbance Attenuation Nonlinear Robust Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Friedman, Differential Games, Wily-Interscience, New York, 1971.MATHGoogle Scholar
  2. 2.
    A. Isidori, “H∞ Control via Measurement Feedback for Affine Nonlinear Systems”, International Journal of Robust and Nonlinear Control, Vol.4, pp. 553–574, 1994.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    A. Isidori, Nonlinear Control Systems: An Introduction (3rd Edition), Springer-Verlag, New York, 1995.MATHGoogle Scholar
  4. 4.
    A. Isidori and A. Astolfi, “Disturbance Attenuation and H∞ Control via Measurement Feedback in Nonlinear Systems”, IEEE Trans. AC, Vol. 37, No. 10, pp.1283–1293, 1992.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    B. A. Francis, A Course in H∞ Control Theory, New York: Springer-Verlag, 1987.CrossRefGoogle Scholar
  6. 6.
    C. A. Jcobson, A. M. Stankovic, G. Tadmor and M. A. Stevens, “Towards a Dissipativity Framework for Power System Stabilizer Design”, IEEE Trans. PS, Vol. 11, No. 4, pp. 1963–1968, November, 1996.Google Scholar
  7. 7.
    D. Cheng, T. J. Tarn and A. Isidori, “Global Linearization of Nonlinear Systems Via Feedback”, IEEE AC, Vol. 30, No. 8, pp. 808–811, 1985.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    D. J. Hill and P. J. Moylan, “Connections between Finite-Gain and Asymptotic Stability”, IEEE Trans. AC, Vol. 25, pp. 931–936, 1980.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    D. J. Hill and P. J. Moylan, “Dissipative Dynamical Systems: Basic Input-Output and State Propertiies”, J. Frankin Inst, Vol. 309, pp.327–357, 1980.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    D. J. Hill and P. J. Moylan, “The Stability of Nonlinear Dissipative Systems”, IEEE Trans. AC, Vol. 21, pp. 708–711, 1976.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    G. Guo, Y. Wang and D. J. Hill, “Nonlinear Output Stabilization Control for Multimachine Power Systems”, IEEE Trans. Circuit and Systems, Part 1, Vol. 47, No. 1, pp. 46–53, 2000.CrossRefGoogle Scholar
  12. 12.
    H. Jiang, H. Cai, J. F. Dorsey and Z. QU. “Towards a Globally Robust Decentralized Control for Large-Scale Power Systems”, IEEE Trans. Control Systems Technology, Vol. 5,pp.309–319, 1997.CrossRefGoogle Scholar
  13. 13.
    J. C. Willems, “Dissipative Dynamical Systems, Part I: General Theory”, Arch. Rat. Mech. Anal., Vol. 45, pp. 321–351, 1972.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    J. C. Willems, “Dissipative Dynamical Systems, Part II: Linear Systems with Quadratic Supply Rates”, Arch. Rat. Mech. Anal., Vol. 45, pp.352–393, 1972.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    J. Doyle, K. Glover, P. Khargonekar, B. A. Francis, “State-Space Solution to Standard H2 and H∞. Control Problem”, IEEE AC, Vol. 34, No. 8, pp.831–842, 1989.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    J. William Helton, Matthew R. James, Extending H∞ Control to Nonlinear Systems: Control of Nonlinear Systems to Achieve Performance Objectives, SI AM, Philadelphia, 1999.CrossRefGoogle Scholar
  17. 17.
    K. Ohtsuka, T. Taniguchi, T. Sato et. al., “A H∞ Optimal Theory-Based Generator Control System”, IEEE Trans. EC, Vol. 7, No. 1, pp. 108–113. 1992.Google Scholar
  18. 18.
    K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Upper Saddle River, NJ:Prentice-Hall, 1996.MATHGoogle Scholar
  19. 19.
    M. James, “Computing the H∞ Norm for Nonlinear Systems”, Proc. 12th IF AC World Congr, Sydney, Australia, 1993.Google Scholar
  20. 20.
    Q. Lu, S. Mei, T. Shen and W. Hu, “Recursive Design of Nonlinear H∞ Excitation Controller”, Science in China(series E), Vol. 43, No. 1, pp23–31, 2000.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Q. Lu, S. Mei, W. Hu and Y. H. Song, “Decentralized Nonlinear H∞ Excitation Control Based on Regulation Linearization”, IEE Proc-Gener. Transm. Distrib., Vol 147, No. 4, pp245–251,2000.CrossRefGoogle Scholar
  22. 22.
    R. Issacs, Differential Games, Wiley, New York, 1965.Google Scholar
  23. 23.
    R. Marino, W. Respondek, A. J. van der Schaft and P. Tomei, “Nonlinear H∞ Almost Disturbance Decoupling”, System & Control Letters. Vol. 23, pp. 159–168, 1994.MATHCrossRefGoogle Scholar
  24. 24.
    S. Chen and O. P. Malik, “H∞, Optimization-Based Power System Stabilizer Design”, IEE Proc.-Generation, Transmission and Distribution, Vol. 142, No.2, pp. 179–184, 1995.CrossRefGoogle Scholar
  25. 25.
    Van Schaft, “L2-Gain Analysis of Nonlinear Systems and Nonlinear State Feedback H∞ Control”, IEEE Trans. AC, Vol. 33, No. 6, pp.770–784, 1992.CrossRefGoogle Scholar
  26. 26.
    Y. Wang and D. J. Hill. “Robust Nonlinear Coordinated Control of Power Systems”, Automatica, Vol. 32, No. 9, pp.611–618, 1996MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Y. Wang, D. J. Hill and G. Guo, “Robust Decentralized Control for Multimachine Power Systems”, IEEE Trans. Circuits and Systems, Vol. 45, No. 3, pp. 271–279, 1998.CrossRefGoogle Scholar
  28. 28.
    Y. Wang, G. Guo and D. Hill, “Robust Decentralized Nonlinear Controller Design for Multimachine Power Systems”, Automatica, Vol. 33, No. 9, pp. 1725–1733, 1997.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Y. Wang, L. Xie and C. E. De Souza, “Robust Control of a Class of Uncertain Nonlinear Systems”, Systems & Control Letters, Vol. 19, 139–149, 1992a.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Y. Wang, L. Xie, D. J. Hill and R. H. Middleton, “Robust Nonlinear Controller Design for Transient Stability Enhancement of Power Systems”, Proc. 31st IEEE Conf. On Decision and Control, Tuson, Arizona, pp.1117–1122, 1992.Google Scholar
  31. 31.
    Z. Qu, “Robust Control of a Class of Nonlinear Uncertain System”, IEEE. Trans. AC, Vol. 37, pp. 1437–1442, 1992.MATHCrossRefGoogle Scholar
  32. 32.
    Z. Qu, J. F. Dorsey, J. Bond, and J. McCalley, “Robust Transient Control of Power Systems”, IEEE Trans. Circuits and Systems, Vol. 39, pp.470–476, 1992.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Qiang Lu
    • 1
  • Yuanzhang Sun
    • 1
  • Shengwei Mei
    • 1
  1. 1.Tsinghua UniversityBeijingChina

Personalised recommendations