• Qiang Lu
  • Yuanzhang Sun
  • Shengwei Mei
Part of the The Springer International Series on Asian Studies in Computer and Information Science book series (ASIS, volume 10)


Out of many problems to be resolved and improved in modern power systems, the economy and reliability of power systems are the two main categories. Reliability consists of two different aspects. One is how to choose the ways of connection of power plants, substations, and power networks to minimize the probability of occurrence of such accidents that lead to power cut. Problems pertaining to this aspect can be called the static or structural reliability of power systems. The other is the stability of power systems, that is, the ability of power systems to keep in synchronization among the generators under small or large disturbances. Problems in this aspect can be called the dynamic reliability or dynamic security of power systems [25, 54].


Power System Equilibrium Point Nonlinear Control System Power System Stabilizer Approximate Linearization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Fouad and Vijay Vittal, Power System Transient Stability Analysis Using the Transient Energy Function Method. Prentice -Hall, 1992Google Scholar
  2. 2.
    A. Isidori, “H∞ Control via Measurement Feedback for Affine Nonlinear Systems”, International Journal of Robust and Nonlinear Control, Vol.4, pp. 553–574, 1994.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    A. Isidori, Nonlinear Control Systems: An Introduction (3rd Edition), Springer-Verlag, New York, 1995.MATHGoogle Scholar
  4. 4.
    A. Isidori and A. Astolfi, “Disturbance Attenuation and H∞ Control via Measurement Feedback in Nonlinear Systems”, IEEE Trans. AC, Vol. 37, No. 10, pp. 1283–1293, 1992.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    A. K. Bejczy, T. J. Tarn and Y. L. Chen, “Robot Arm Dynamic Control by Computer”, IEEE Int. Conf. Robotics and Ant., St. Louis, 1985.Google Scholar
  6. 6.
    B. Jakubczyk and W. Respondek, “On Linearization of Control Systems”, Bull. Acad. Polon. Sei., Math., 1980.Google Scholar
  7. 7.
    C. A. King, J. W. Chapman and M. D. Ilic, “Feedback Linearizing Excitation Controller on a Full-scale Power System Model”, IEEE Trans. PWRS, Vol. 9, pp. 1102–1109, 1994Google Scholar
  8. 8.
    D. Cheng, T. J. Tarn and A. Isidori, “Global Linearization of Nonlinear Systems Via Feedback”, IEEE Trans. AC, Vol. 30, No. 8, pp. 808–811, 1985.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    D. P. Atherton, Stability of Nonlinear Systems, John Wiley, NewYork, 1981.MATHGoogle Scholar
  10. 10.
    F. P. Demello and C. Concordia, “Concepts of Synchronous Machine Stability as Affected by Excitation Control”, IEEE Trans. Power Appar. Syst., pp. 316–329, April, 1969.Google Scholar
  11. 11.
    F. W. Warner, Foundations of Differential Manifolds and Its Lie Groups, Scott, Foresman, Glenview, 1970.Google Scholar
  12. 12.
    G. Meyer, L. R. Hunt and R. Su, “Design of a Helicopter Autopilot by Means of Linearizing Transformations”, Guidance and Control Panel 35th Symposium, Lisbon, Portugel (AGARD Conf. Proc. No. 321), 1983.Google Scholar
  13. 13.
    G. Meyer, R. Su and L. R. Hunt, “Application of Nonlinear Transformation to Automatic Flight Control”, Automatic, Vol. 20, No.1, 1984.Google Scholar
  14. 14.
    H. D. Chiang, M. W. Hirsch and F. F. Wu, “Stability Regions of Nonlinear Autonomous Dynamical Systems”, IEEE Trans. AC, Vol. 33, No. 1, pp. 16–27, 1988.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    H. J. Sussmann, “Lie bracket, real analyticity and geometric control”, in Geometric theory of nonlinear control systems, Birkhauser, Boston, pp. 1–116, 1983.Google Scholar
  16. 16.
    H. Kwakernak and R. Sivan, Linear Optimal Control Systems, Wiley, New York, 1972.Google Scholar
  17. 17.
    H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamic Control Systems, Springer-Verlag, New York, 1990.CrossRefGoogle Scholar
  18. 18.
    H. S. Tsien, Engineering Cybernetics, New York, McGraw-Hill Book Company, Inc., 1958.Google Scholar
  19. 19.
    I. M. Mareeis and D. J. Hill, “Monotone Stability of Nonlinear Feedback Systems”, Journal of Mathematical Systems, Estimation, and Control,. Vol. 2, No. 3, pp. 275–291, 1992.MathSciNetGoogle Scholar
  20. 20.
    J. H. Anderson, “The Control of A Synchronous Machine Using Optimal Control Theory”, Proc. IEEE 90, pp. 25–35, 1971CrossRefGoogle Scholar
  21. 21.
    J. Hammer, “Nonlinear Systems, Stabilization, and Coprimeness”, Int. J. Contr. Vol.42, pp. 1–20, 1985.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    J. M. Coron, “Linearized Control Systems and Applications to Smooth Stabilization”, SIAM J. Control Optim. Vol. 32, pp. 358–386,1994.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    J. Wang, W. J. Rugh, “Feedback Linearization Families for Nonlinear Systems”, IEEE Trans. AC, Vol. 32, pp.935–940, 1987.MATHCrossRefGoogle Scholar
  24. 24.
    J. Zaborszky, G. Huang, B. Zheng and T. C. Leung, “On the Phase Portrait of a Class of Large Nonlinear Dynamic Systems Such As the Power System”, IEEE Trans. AC, Vol. 33, No. l,pp.4–15, 1988.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    M. A. Pai, Power System Stability, New York: North Holland, 1981.MATHGoogle Scholar
  26. 26.
    M. Klein, G. J. Rogers, S. Moorty, and P. Kundur. “Analytical Investigation of Factors Influencing Power System Stabilizer Performance”, IEEE EC, Vol. 7, pp.382–388, 1992.Google Scholar
  27. 27.
    M. Spivk, A Comprehensive Introduction to Differential Geometry, Vol. I, Publish or Peremish, Boston, 1970.Google Scholar
  28. 28.
    M. Vidyasagar, Nonlinear Systems Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1978.Google Scholar
  29. 29.
    M. Zribi, J. Chiasson, “Exact Linearization Control of a PM Stepper Motor”, Proc. American Control Conference, Pittsburgh, 1989.Google Scholar
  30. 30.
    N. Kalouptsidis and J. Tsinias, “Stability Improvement of Nonlinear Systems by Feedback”, IEEE Trans. AC, Vol. 29, pp. 364–367, 1984.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    P. Kunder, Power System Stability and Control, McGraw-Hill, Inc. 1994.Google Scholar
  32. 32.
    P. M Anderson, and A. A. Fouad, Power System Control and Stability, IEEE Press, New York, 1994.Google Scholar
  33. 33.
    Q. Lu, and Y. Sun, “Nonlinear Stabilizing Control of Multimachine Systems”, IEEE Trans. PES, Vol. 4, No.1, pp. 236–241, 1989.Google Scholar
  34. 34.
    Q. Lu, S. Mei, T. Shen and W. Hu, “Recursive Design of Nonlinear Hx Excitation Controller”, Science in China(series E), Vol. 43, No. 1, pp23–31, 2000.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Q. Lu, S. Mei, W. Hu and Y. H. Song, “Decentralized Nonlinear H∞ Excitation Control Based on Regulation Linearization”, IEE Proc-Gener. Transm. Distrib., Vol 147, No. 4, pp245–251,2000.CrossRefGoogle Scholar
  36. 36.
    Q. Lu, Y. Sun and Gordon K.F. Lee, “Nonlinear Optimal Excitation Control For Multimachine Systems”, IFAC Symposium on Power System Modeling and Control Application, Brussels, Sept., 1988.Google Scholar
  37. 37.
    Q. Lu, Y. Sun, Z. Xu and Y. Mochizuki, “Decentralized Nonlinear Optimal Excitation Control”. IEEE Trans. PWRS, Vol. 11, No. 4, pp. 1957–1962, 1996.Google Scholar
  38. 38.
    R. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957.MATHGoogle Scholar
  39. 39.
    R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Company, New York, 1960.MATHGoogle Scholar
  40. 40.
    R. E. Kaiman, “Mathematical Description of Linear Dynamical Systems”, J. SIAM Control. Ser. A, Vol. 1, pp. 152–192, 1963.MathSciNetGoogle Scholar
  41. 41.
    R. Marino, “On the Largest Feedback Linearizable Subsystem”, System & Control Letters, Vol. 6, pp.345–351, 1986.MATHCrossRefGoogle Scholar
  42. 42.
    R. Marino, W. M. Boothby, D. L. Elliott, “Geometric Properties of Linearizable Control Systems”, Math. Systems Theory, Vol. 18, pp. 97–123, 1985.MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    R. Su, “On the Linear Equivalence of Nonlinear Systems”, System & Control Letters, Vol. 2, pp.48–52, 1982.MATHCrossRefGoogle Scholar
  44. 44.
    R. W. Brockett, “Nonlinear Systems and Differential Geometry”, Proc. IEEE, Vol. 64, No.1, 1976.Google Scholar
  45. 45.
    S. P. Banks, Mathematical Theories of Nonlinear Systems, Prentice Hall, Hertfordshire, 1988.MATHGoogle Scholar
  46. 46.
    T. Basar, “Disturbance Attenuation in LTI Plants with Finite Horizon: Optimality of Nonlinear Controllers”, Systems & Control Letters, Vol. 13, pp.183–191, 1989.MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    T. J. Tarn, A K Bejczy, A Isidori and Y L Chen, “Nonlinear Feedback in Robot Arm Control”, Proc. 23rd IEEE Conf. Dec. Contr., Las Vegas, 1984.Google Scholar
  48. 48.
    Van Schaft, “L2-Gain Analysis of Nonlinear Systems and Nonlinear State Feedback Hx Control”, IEEE Trans. AC, Vol. 33, No. 6, pp.770–784, 1992.CrossRefGoogle Scholar
  49. 49.
    W. A. Boothby, An Introduction to Differential Manifold and Riemannian Geometry, Academic, New York, 1975.Google Scholar
  50. 50.
    W. Kang, “Nonlinear H∞ Control and Its Applications to Rigid Spacecraft”, IEEE Trans. AC, Vol. 40, pp. 1281–1285, 1998.CrossRefGoogle Scholar
  51. 51.
    W. Mielczarski and A. Zajaczkowski, “Nonlinear Field Voltage Control of a Synchronous Generator Using Feedback Linearization”, Automatica Vol. 30, pp. 1625–1630, 1994.MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    W. Respondek, “Linearization, feedback and Lie Brackets”, in Geometric theory of nonlinear control systems, Technical University of Wroclaw, Poland, pp.131–166, 1985.Google Scholar
  53. 53.
    W. Respondek, Geometric Methods in Linearization Nonlinear Systems in Mathematical Control Theory, Banach Center Publications, Polish Scientific Publishers, Warsaw, pp. 453–467, 1985.Google Scholar
  54. 54.
    Y. N. Yu, Electric Power System Dynamics, Academic Press, 1983.Google Scholar
  55. 55.
    Y. N. Yu, K. Vongsuriya and L. N. Wedman, “Application of an optimal Control Theory to a Power System”, IEEE Trans. Power Appar. Syst., pp. 55–62, Jan., 1970.Google Scholar
  56. 56.
    Y. Sun, Q. Lu and J. Gao, “A New Nonlinear Modulation Control for HVDC Power Transmission Systems”, CSEE/IEEE International Conference on Power System Technology, Beijing, Sept., 1991.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Qiang Lu
    • 1
  • Yuanzhang Sun
    • 1
  • Shengwei Mei
    • 1
  1. 1.Tsinghua UniversityBeijingChina

Personalised recommendations