Applications to Elliptic Problems in Bounded Domains

  • Maria do Rosário Grossinho
  • Stepan Agop Tersian
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 52)


In this chapter, we consider Neumann problem and a Hammerstein equation on a bounded domain Ω ⊂ R n , with smooth boundary Γ, and present some results obtained by applying variational methods.


Elliptic Problem Nontrivial Solution Neumann Problem Critical Point Theory Nonlinear Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ARa]
    Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications. J. Funct. Anal., 1973;14:349–381.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [ADN]
    Agmon S, Douglis A, Nirenberg L. Estimates near boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 1959; 12:623–727.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [AL]
    Ahmad S, Lazer A. Critical point theory and a theorem of Amaral and Pera. Boll. Un. Mat. Ital., 1984;6, 3–B:583–598.MathSciNetGoogle Scholar
  4. [Am]
    Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Review, 1976;18:620–709.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [AAM]
    Amann H, Ambrosetti A, Mancini G. Elliptic equations with noninvertible Fredholm linear part and bounded nonlinearities. Math. Z., 1978;158:179–194.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [Ca]
    Castro A. Hammerstein integral equations with indefinite kernel, Internat. J. Math & Sci., 1978;187–201.Google Scholar
  7. [CW]
    Costa DG, Willem M. Multiple critical points of invariant functionals and applications. Nonlinear Anal., 1986;9:843–852.MathSciNetCrossRefGoogle Scholar
  8. [Do]
    Dolph C. Nonlinear integral equations of Hammerstein type. Trans.Amer. Math.Soc., 1949;66:289–307.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [DT]
    Drabek P, Tersian S. Characterization of the range of Neumann problem for semilinear elliptic equations. Nonlinear Anal., 1987;11,N 6:733–739.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [Dra]
    Drabek P. Bounded nonlinear perturbations of second order linear elliptic problems. Comm. Math. Univ. Carolinae, 1981;22:215–221.MathSciNetzbMATHGoogle Scholar
  11. [Fig1]
    De Figueiredo DG. The Dirichlet problem for nonlinear elliptic equations: a Hilbert space approach. Lect. Notes Math. N 446, Berlin: Springer-Verlag, 1975.Google Scholar
  12. [Ham]
    Hammerstein A. Nichtlineare Integralgleichungen nebst Anwendungen. Acta Math., 1930;54:111–176.MathSciNetCrossRefGoogle Scholar
  13. [Kr]
    Krasnosel’skii, Mark. Topological Methods in the Theory of Nonlinear Integral Equations. Moskow: Gostehizdat, 1956 (in Russian), (Engl. transl., N.Y.: Pergamon Press, 1964).Google Scholar
  14. [KZ]
    Krasnosel’skii, Mark and Zabrejko, Peter. Geometric Methods of Nonlinear Analysis. Moskow: Nauka, 1975. (in Russian), ( Engl. transl. N.Y.: Springer-Verlag, 1984).zbMATHGoogle Scholar
  15. [LL]
    Lazer AC, Leach D. On a nonlinear two-points boundary value problems. J. Math. Anal. Appl., 1969;26: 20–27.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [LS]
    Lazer AC, Solimini S. Nontrivial solutions of operator equations and Morse indices of critical points of min-max type. Nonlinear Anal., 1988;12:761–775.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [MW1]
    Mawhin J, Willem M. Multiple solutions of the periodic boundary value problems for some forced pendulum type equations. J. Diff. Eq., 1984;52:264–287.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [MW2]
    Mawhin, Jean and Willem, Michael. Critical Point Theory and Hamiltonian Systems. N.Y.: Springer-Verlag, 1988.Google Scholar
  19. [MWa]
    Mawhin J, Ward J. Nonresonance and existence of nonlinear boundary value problems. Nonlinear Anal., 1981;6:677–684.MathSciNetCrossRefGoogle Scholar
  20. [Ter1]
    Tersian S. Solvability of Neumann problem for semilinear elliptic equations. Proceedings of XV-th Spring Conference of U.M.B., Sofia, 1986, 323–330.Google Scholar
  21. [Ter2]
    Tersian S. Existence results for Neumann problem for semilinear elliptic equations. Proceedings of Scientific Session, dedicated to the memory of Acad. L. Chakalov, Samokov, 1986,125–131.Google Scholar
  22. [Ter6]
    Tersian S, Zabreiko PP. Hammerstein integral equations with nontrivial solutions. Results in Mathematics, 1991;19:179–188.MathSciNetzbMATHGoogle Scholar
  23. [Ter7]
    Tersian S. Some existence results for Hammerstein integral equations. Proceedings of Second Colloquium on Differential Equations, Plovdiv. World Scientific, 1992, 205–219.Google Scholar
  24. [War]
    Ward JR. Perturbations with some superlinear growth for a class of second order elliptic boundary value problems. Nonlinear Anal., 1982;6:367–374.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [ZP1]
    Zabreiko P, Povolotskii A. On the theory of Hammerstein equations. Ukrain. Math. J., 1970;22,2:150–162. (in Russian)CrossRefGoogle Scholar
  26. [ZP2]
    Zabreiko P, Povolotskii A. On second solutions of Hammerstein equations. Vestnik Jarosl. Gos. Univ., 1973;2:31–41. (in Russian)Google Scholar
  27. [ZT]
    Zabreiko P, Tersian S. On the variational method for solvability of nonlinear integral equations of Hammerstein type. Comptes Rendus d’ Academie Bulgare des Sciences, 1990;43,6:9–11.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Maria do Rosário Grossinho
    • 1
    • 2
  • Stepan Agop Tersian
    • 3
  1. 1.ISEGUniversidade Técnica de LisboaPortugal
  2. 2.CMAFUniversidade de LisboaPortugal
  3. 3.University of RousseBulgaria

Personalised recommendations