Advertisement

Analytic Extension Formulas, Integral Transforms and Reproducing Kernels

  • Saburou Saitoh
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 9)

Abstract

In this survey article, we shall present a general framework and applications of our recent results among reproducing kernels, linear transforms, analytic extension formulas and representations of analytic functions.

Keywords

Harmonic Function Meromorphic Function Conformal Mapping Inversion Formula Reproduce Kernel Hilbert Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Aikawa, N. Hayashi, and S. Saitoh. The Bergman space on a sector and the heat equation. Complex Variables, 15 (1990), 27–36.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    H. Aikawa, N. Hayashi, and S. Saitoh. Isometrical identities for the Bergman and the Szegö spaces on a sector. J. Math. Soc. Japan, 43 (1991), 196–201.MathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Aikawa, N. Hayashi, I. Onda, and S. Saitoh. Analytical extensions of the members of the Bergman and Szegö spaces on some tube domains. Arch. Math., 56 (1991), 362–369.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    H. Aikawa. Infinite order Sobolev spaces, analytic continuation and polynomial expansions. Complex Variables, 18 (1992), 253–266.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    K. Amano, S. Saitoh, and A. Syarif. A real inversion formula for the Laplace transform in a Sobolev space. Zeitschrift für Analysis und ihre Anwendungen, 18 (1999), 1031–1038.MathSciNetMATHGoogle Scholar
  6. [6]
    K. Amano, S. Saitoh, and M. Yamamoto. Error estimates of the real inversion formulas of the Laplace transform. Graduate School of Math. Sci. The University of Tokyo, Preprint Series (1998), 98–29. Integral Transforms and Special Functions, 10 (2000), 1–14.MathSciNetCrossRefGoogle Scholar
  7. [7]
    A. de Bouard, N. Hayashi, and K. Kato. Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations. Ann. Henri Inst. Poincare Analyse nonlinear, 12 (1995), 673–725.MATHGoogle Scholar
  8. [8]
    D.-W. Byun and S. Saitoh. A real inversion formula for the Laplace transform. Zeitschrift für Analysis und ihre Anwendungen, 12 (1993), 597–603.MathSciNetMATHGoogle Scholar
  9. [9]
    D.-W. Byun and S. Saitoh. Approximation by the solutions of the heat equation. J. Approximation Theory, 78 (1994), 226–238.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    D.-W. Byun and S. Saitoh. Best approximation in reproducing kernel Hilbert spaces. Proc. of the 2th International Colloquium on Numerical Analysis, VSP-Holland, (1994), 55–61.Google Scholar
  11. [11]
    D.-W. Byun and S. Saitoh. Analytic extensions of functions on the real line to entire functions. Complex Variables, 26 (1995), 277–281.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    N. Hayashi. Global existence of small analytic solutions to nonlinear Schrödinger equations. Duke Math. J., 60 (1990), 717–727.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    N. Hayashi. Solutions of the (generalized) Korteweg-de Vries equation in the Bergman and the Szegö spaces on a sector. Duke Math. J., 62 (1991), 575–591.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    N. Hayashi and K. Kato. Regularity of solutions in time to nonlinear Schrödinger equations. J. Funct. Anal., 128 (1995), 255–277.MathSciNetCrossRefGoogle Scholar
  15. [15]
    N. Hayashi and S. Saitoh. Analyticity and smoothing effect for the Schrödinger equation. Ann. Inst. Henri Poincaré, 52 (1990), 163–173.MathSciNetMATHGoogle Scholar
  16. [16]
    N. Hayashi and S. Saitoh. Analyticity and global existence of small solutions to some nonlinear Schrödinger equation. Commun. Math. Phys., 139 (1990), 27–41.MathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Itô. Diffusion Equations. Transi. Math. Monographs,Amer. Math. Soc., (1992), 114.Google Scholar
  18. [18]
    J. Kajiwara and M. Tsuji. Program for the numerical analysis of inverse formula for the Laplace transform. Proceedings of the Second Korean-Japanese Colloquium on Finite or Infinite Dimensional Complex Analysis, (1994), 93–107.Google Scholar
  19. [19]
    J. Kajiwara and M. Tsuji. Inverse formula for Laplace transform. Proceedings of the 5th International Colloquium on Differential Equations, VHP-Holland, (1995), 163–172.Google Scholar
  20. [20]
    H. Körezlioglu. Reproducing kernels in separable Hilbert spaces. Pacific J. Math., 25 (1968), 305–314.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    G. Nakamura, S. Saitoh, and A. Syarif. Representations of initial heat distributions by means of their heat distributions as functions of time. Inverse Problems, 15 (1999), 1255–1261.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    G. Nakamura, S. Saitoh, and A. Syarif. Representations and harmonic extension formulas of harmonic functions on half spaces. Complex Variables, 42 (2000), 323–332.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    S. Saitoh. Hilbert spaces induced by Hilbert space valued functions. Proc. Amer. Math. Soc., 89 (1983), 74–78.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    S. Saitoh. The Weierstrass transform and an isometry in the heat equation. Applicable Analysis, 16 (1983), 1–6.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    S. Saitoh. Some fundamental interpolation problems for analytic and harmonic functions of class L2. Applicable Analysis, 17 (1984), 87–106.MATHCrossRefGoogle Scholar
  26. [26]
    S. Saitoh. Cauchy integrals for L2 functions. Arch. Math., 51 (1988), 451–454.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    S. Saitoh. Theory of Reproducing Kernels and its Applications. Pitman Research Notes in Mathematics Series,189(1988), Longman Scientific & Technical, UK.Google Scholar
  28. [28]
    S. Saitoh. Interpolation problems of Pick-Nevanlinna type. Pitman Research Notes in Mathematics Series, 212 (1989), 253–262.MathSciNetGoogle Scholar
  29. [29]
    S. Saitoh. Isometrical identities and inverse formulas in the one- dimensional Schrödinger equation. Complex Variables,15 (1990), 135148.Google Scholar
  30. [30]
    S. Saitoh. Isometrical identities and inverse formulas in the one- dimensional heat equation. Applicable Analysis, 40 (1991), 139–149.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    S. Saitoh. Inequalities for the solutions of the heat equation. General Inequalities 6, (1992), 351–359. Birkhäuser Verlag, Basel Boston.Google Scholar
  32. [32]
    S. Saitoh. Representations of the norms in Bergman-Selberg spaces on strips and half planes. Complex Variables, 19 (1992), 231–241.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    S. Saitoh. The Hilbert spaces of Szegö type and Fourier-Laplace transforms on R n . Generalized Functions and Their Applications,(1993), 197–212. Plenum Publishing Corporation, New York.Google Scholar
  34. [34]
    S. Saitoh. Analyticity of the solutions of the heat equation on the half space R. Proc. of the 4th International Colloquium on Differential Equations, VSP-Holland, (1994), 265–275.Google Scholar
  35. [35]
    S. Saitoh. One approach to some general integral transforms and its applications. Integral Transforms and Special Functions, 3 (1995), 49–84.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    S. Saitoh. Natural norm inequalities in nonlinear transforms. General Inequalities 7, (1997), 39–52. Birkhäuser Verlag, Basel, Boston.Google Scholar
  37. [37]
    S. Saitoh. Representations of inverse functions. Proc. Amer. Math. Soc., 125 (1997), 3633–3639.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    S. Saitoh. Integral Transforms, Reproducing Kernels and their Applications. Pitman Research Notes in Mathematics Series, 369 (1997). Addison Wesley Longman, UK.Google Scholar
  39. [39]
    S. Saitoh. Nonlinear transforms and analyticity of functions. Nonlinear Mathematical Analysis and Applications,(1998), 223–234. Hadronic Press, Palm Harbor.Google Scholar
  40. [40]
    S. Saitoh. Various operators in Hilbert space induced by transforms. International J. of Applied Math., 1 (1999), 111–126.MathSciNetMATHGoogle Scholar
  41. [41]
    S. Saitoh and M. Yamamoto. Stability of Lipschitz type in determination of initial heat distribution. J. of Inequa. 6 Appl., 1 (1997), 73–83.MathSciNetMATHGoogle Scholar
  42. [42]
    S. Saitoh and M. Yamamoto. Integral transforms involving smooth functions. Integral Transforms and their Applications,(1999), Kluwer Academic Publishers.Google Scholar
  43. [43]
    S. Saitoh. Linear integro-differential equations and the theory of reproducing kernels. Volterra Equations and Applications. C. Corduneanu and I.W. Sandberg(eds), Gordon and Breach Science Publishers (2000), Amsterdam.Google Scholar
  44. [44]
    V. K. Tuan, S. Saitoh, and M. Saigo. Size of support of initial heat distribution in the 1D heat equation. Applicable Analysis, 74 (2000), 439–446.MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    S. Saitoh. Representations of the solutions of partial differential equations of parabolic and hyperbolic types by means of time observations. Applicable Analysis, 76 (2000), 283–289.MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    S. Saitoh and M. Mori. Representations of analytic functions in terms of local values by means of the Riemann mapping function. Complex Variables,(to appear).Google Scholar
  47. [47]
    S. Saitoh. Representations of meromorphic functions in terms of Laurent expansions and partial boundary values. (preprint).Google Scholar
  48. [48]
    K. Amano, M. Asaduzzaman, T. Ooura and S. Saitoh. Representations of analytic functions on typical domains in terms of local values and truncation error estimates. Analytic Extension Formulas and their Applications,(2001), Kluwer Academic Publishers, Chapter 2.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Saburou Saitoh
    • 1
  1. 1.Department of Mathematics, Faculty of EngineeringGunma UniversityKiryuJapan

Personalised recommendations