Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 36))

Abstract

In this chapter we begin our study of optimal synthesis and in particular will derive controllers that optimize the H 2 performance criterion. We will start by defining the synthesis problem to be solved, and will then provide a number of motivating interpretations. Following this, we will develop some new matrix tools for the task at hand, before proceeding to solve this optimal control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references

  1. B. D. O. Anderson and J. B. Moore. Optimal Control: Linear Quadratic Methods. Prentice Hall, 1990.

    Google Scholar 

  2. R.W. Brockett. Finite Dimensional Linear Systems. Wiley, 1970.

    Google Scholar 

  3. P. Van Dooren. A generalized eigenvalue approach for solving Riccati equations. SIAM Journal of Scientific and Statistical Computing, 2: 121–135, 1981.

    Article  MATH  Google Scholar 

  4. J. C. Doyle, K. Glover, P. Khargonekar, and B. A. Francis. State-Space solutions to standard H 2 and H control problems. IEEE Transactions on Automatic Control, 34: 831–847, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Feron, V. Balakrishnan, S. Boyd, and L. El Ghaoui. Numerical methods for H2 related problems. In Proc. American Control Conference, 1992.

    Google Scholar 

  6. R.E. Kalman. A new approach to linear filtering and prediction theory. ASME Transactions, Series D: Journal of Basic Engineering, 82: 35–45, 1960.

    Article  Google Scholar 

  7. R.E. Kalman and R.S. Bucy. New results in linear filtering and prediction theory. ASME Transactions, Series D: Journal of Basic Engineering, 83: 95–108, 1960.

    Article  MathSciNet  Google Scholar 

  8. H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. WileyInterscience, 1972.

    Google Scholar 

  9. P. Lancaster and L. Rodman. Algebraic Riccati Equations. Clarendon Press, 1995.

    Google Scholar 

  10. C. Scherer, P. Gahinet, and M. Chilali. Multiobjective output-feedback control via LMI-optimization. IEEE Transactions on Automatic Control, 42: 896–911, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. C. Willems. Least squares stationary optimal control and the algebraic Riccati equation. IEEE Transactions on Automatic Control, 16: 621–634, 1971.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dullerud, G.E., Paganini, F. (2000). H 2 Optimal Control. In: A Course in Robust Control Theory. Texts in Applied Mathematics, vol 36. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3290-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3290-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3189-4

  • Online ISBN: 978-1-4757-3290-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics