Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 36))

  • 3042 Accesses

Abstract

One of the prevailing viewpoints for the study of systems and signals is that in which a dynamical system is viewed as a mapping between input and output functions. This concept underlies most of the basic treatments of signal processing, communications, and control. Although a functional analytic perspective is implicit in this viewpoint, the associated machinery is not commonly applied to the study of dynamical systems. In this course we will see that incorporating more tools from analysis (e.g., function spaces, operators) into this conceptual picture leads to methods of key importance for the study of systems. In particular, operator norms provide a natural way to quantify the “size” of a system, a fundamental requirement for a quantitative theory of system uncertainty and model approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and references

  1. N. Young. An Introduction to Hilbert Space. Cambridge University Press, 1988.

    Google Scholar 

  2. P.R. Halmos. A Hilbert Space Problem Book. Springer, 1982.

    Google Scholar 

  3. W. Rudin. Real and Complex Analysis. McGraw-Hill, 1987.

    Google Scholar 

  4. C. Kenig and P. Tomas. Maximal operators defined by Fourier multipliers. Studia Math., 68: 79–83, 1980.

    MathSciNet  MATH  Google Scholar 

  5. S. Bochner and K. Chandrasekharan. Fourier Transforms. Princeton University Press, 1949.

    Google Scholar 

  6. P.R. Halmos. Measure Theory. Springer, 1974.

    Google Scholar 

  7. P.R. Halmos. A Hilbert Space Problem Book. Springer, 1982.

    Google Scholar 

  8. M.L.J. Hautus. Controllability and observability conditions of linear autonomous systems. In Proc. Kon. Ned. Akad. Wetensch. Ser. A., 1969.

    Google Scholar 

  9. D. Hinrichsen and A.J. Pritchard. An improved error estimate for reduced order models of discrete time systems. IEEE Transactions on Automatic Control, 35: 317–320, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Hoffman. Banach Spaces of Analytic Functions. Prentice-Hall, 1962.

    Google Scholar 

  11. W. Rudin. Real and Complex Analysis. McGraw-Hill, 1987.

    Google Scholar 

  12. M. G. Safonov. Tight bounds on the response of multivariable systems with component uncertainty. In Proc. Allerton Conf., 1978.

    Google Scholar 

  13. M. G. Safonov and M. Athans. A multiloop generalization of the circle criterion for stability margin analysis. IEEE Transactions on Automatic Control, 26: 415–422, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. G. Safonov and R.Y. Chiang. Real/complex K m synthesis without curve fitting. In Control and Dynamic Systems; editor C. T. Leondes. Academic Press, 1993.

    Google Scholar 

  15. M.G. Safonov. Stability and Robustness of Multivariable Feedback Systems. MIT Press, 1980.

    Google Scholar 

  16. M.G. Safonov and R.Y. Chiang. A Schur method for balanced-truncation model reduction. IEEE Transactions on Automatic Control, 34: 729–733, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Sampei, T. Mita, and M. Nakamichi. An algebraic approach to H 99 output feedback control problems. Systems and Control Letters, 14: 13–24, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  18. R.S. Sanchez-Pena and M. Sznaier. Robust Systems Theory and Applications. Wiley, 1998.

    Google Scholar 

  19. I.W. Sandberg. An observation concerning the application of the contraction mapping fixed-point theorem and a result concerning the normboundedness of solutions of nonlinear functional equations. Bell Systems Technical Journal, 44: 809–1812, 1965.

    Google Scholar 

  20. C. Scherer. 11,9 optimization without assumptions on finite or infinite zeros. SIAM Journal of Control and Optimization, 30: 143–166, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Scherer, P. Gahinet, and M. Chilali. Multiobjective output-feedback control via LMI-optimization. IEEE Transactions on Automatic Control, 42: 896–911, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.S. Shamma. The necessity of the small-gain theorem for time-varying and nonlinear systems. IEEE Transactions on Automatic Control, 36: 1138–1147, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  23. J.S. Shamma. Robust stability with time varying structured uncertainty. IEEE Transactions on Automatic Control, 39: 714–724, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  24. R.E. Skelton, T. Iwasaki, and K.M. Grigoriadis. A Unified Algebraic Approach to Linear Control Design. Taylor and Francis, 1998.

    Google Scholar 

  25. S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. Wiley, 1996.

    Google Scholar 

  26. E.D. Sontag. Mathematical Control Theory. Springer, 1998.

    Google Scholar 

  27. M.W. Spong and D.J. Block. The pendubot: A mechatronic system for control research and education. In Proc. IEEE Conference on Decision and Control, 1995.

    Google Scholar 

  28. G. Stein and M. Athans. The LQG/LTR. procedure for multivariable feedback control design. IEEE Transactions on Automatic Control, 32: 105–114, 1987.

    Article  MATH  Google Scholar 

  29. A. A. Stoorvogel. The H Control Problem: A State Space Approach. Prentice Hall, 1992.

    Google Scholar 

  30. A. A. Stoorvogel. The robust H2 control problem: A worst-case design. IEEE Transactions on Automatic Control, 38: 1358–1370, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Strang. Linear Algebra and its Applications. Academic Press, 1980.

    Google Scholar 

  32. B. Sz.-Nagy and C. Foias. Harmonic Analysis of Operators on Hilbert Space. North-Holland, 1970.

    Google Scholar 

  33. M. Sznaier and J. Tierno. Is set modeling of white noise a good tool for robust H2 analysis? In Proc. IEEE Conference on Decision and Control, 1998.

    Google Scholar 

  34. A. L. Tits and M. K. H. Fan. On the small-µ theorem. Automatica, 31: 1199 1201, 1995.

    Google Scholar 

  35. O. Toker and H. Ozbay. On the NP-hardness of the purely complex µ computation, analysis/synthesis, and some related problems in multidimensional systems. In Proc. American Control Conference, 1995.

    Google Scholar 

  36. S. Treil. The gap between the complex structured singular value and its upper bound is infinite. 1999. Preprint.

    Google Scholar 

  37. B. van Keulen. Control for Distributed Parameter Systems: A State-Space Approach. Birkhauser, 1993.

    Google Scholar 

  38. L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38: 49–95, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Vidyasagar. Input-output stability of a broad class of linear time invariant multvariable feedback systems. SIAM Journal of Control, 10: 203–209, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Vidyasagar. The graph metric for unstable plants and robustness estimates for feedback stability. IEEE Transactions on Automatic Control, 29: 403–418, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Vidyasagar. Control System Synthesis: A Factorization Approach. MIT Press, 1985.

    Google Scholar 

  42. M. Vidyasagar. Nonlinear Systems Analysis. Prentice-Hall, 1993.

    Google Scholar 

  43. G. Vinnicombe. Frequency domain uncertainty and the graph topology. IEEE Transactions on Automatic Control, 38: 1371–1383, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Weiss. Representation of shift-invariant operators on L2 by H°° transfer functions: an elementary proof, a generalization to LP, and a counterexample for L . Math. of Control, Signals, and Systems, 4: 193–203, 1991.

    MATH  Google Scholar 

  45. C. Foias and A.E. Frazho. The Commutant Lifting Approach to Interpolation Problems. Birkhauser, 1990.

    Google Scholar 

  46. K.R. Davidson. Nest Algebras. Longman Scientific and Technical, 1988.

    Google Scholar 

  47. P.L. Duren. Theory of H p Spaces. Academic Press, 1970.

    Google Scholar 

  48. D.F. Enns. Model reduction with balanced realizations: an error bound and frequency weighted generalization. In Proc. IEEE Conference on Decision and Control, 1984.

    Google Scholar 

  49. M. Fan, A. Tits, and J. C. Doyle. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Transactions on Automatic Control, 36: 25–38, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Feintuch. Robust Control Theory in Hilbert Space. Springer, 1998.

    Google Scholar 

  51. E. Feron. Analysis of robust H2 performance using multiplier theory. SIAM Journal of Control and Optimization, 35: 160–177, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  52. E. Feron, V. Balakrishnan, S. Boyd, and L. El Ghaoui. Numerical methods for H2 related problems. In Proc. American Control Conference, 1992.

    Google Scholar 

  53. C. Foias and A.E. Frazho. The Commutant Lifting Approach to Interpolation Problems. Birkhauser, 1990.

    Google Scholar 

  54. C. Foias, H. Ozbay, and A. Tannenbaum. Robust Control of Infinite Dimensional Systems. Springer, 1996.

    Google Scholar 

  55. A. Fradkov and V. A. Yakubovich. The S-procedure and duality theorems for nonconvex problems of quadratic programming. Vestnik Leningrad University,31: 81–87, 1973. In Russian.

    Google Scholar 

  56. B.A. Francis. A Course in H,,,„ Control Theory. Springer, 1987.

    Google Scholar 

  57. B.A. Francis. Notes on introductory state space systems. 1997. Personal communication.

    Google Scholar 

  58. P. Gahinet and P. Apkarian. A Linear Matrix Inequality approach to H control. International Journal of Robust and Nonlinear Control, 4: 421–448, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  59. J.B. Garnett. Bounded Analytic Functions. Academic Press, 1981.

    Google Scholar 

  60. M. Rosenblum and J. Rovnyak. Hardy Classes and Operator Theory. Oxford University Press, 1985.

    Google Scholar 

  61. W. Rudin. Real and Complex Analysis. McGraw-Hill, 1987.

    Google Scholar 

  62. M. G. Safonov. Tight bounds on the response of multivariable systems with component uncertainty. In Proc. Allerton Conf., 1978.

    Google Scholar 

  63. B. Sz.-Nagy and C. Foias. Harmonic Analysis of Operators on Hilbert Space. North-Holland, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dullerud, G.E., Paganini, F. (2000). Linear Analysis. In: A Course in Robust Control Theory. Texts in Applied Mathematics, vol 36. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3290-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3290-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3189-4

  • Online ISBN: 978-1-4757-3290-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics